New molecule fights oxidative stress; May lead to therapies for cancer and Alzheimer's

Hannink and his team discovered a molecule that treats oxidative stress.

“Oxidative stress can cause damage to the building blocks of a cell, resulting in excessive cell proliferation, in the case of cancer or cell death, in the case of neurodegenerative diseases like Parkinson’s,” said Mark Hannink,  a professor in the Department of Biochemistry and an investigator at the Bond Life Sciences Center at MU. “Finding the right balance is like walking a tightrope; our work has focused on finding ways to keep oxidative stress at bay.”

Hannink partnered with High Point Pharmaceuticals LLC, a North Carolina-based firm, to find the right combinations of molecules to create an effective drug that fights free radicals. Using tools developed in his lab, Hannink and Kim Jasmer, a graduate student in Hannink’s lab, analyzed a group of molecules developed by the pharmaceutical company that could be good candidates for treating oxidative stress. They identified a particular compound, known as HPP-4382 that has been proven effective in fighting oxidative stress and could eventually be developed into a drug. The molecule has been patented by High Point.

“Kim developed the research tools needed to identify the right molecular candidates making the research more effective and efficient,” Hannink said. “We found the right molecule that corrects the imbalance of oxidative stress and could one day have wide applicability. Because of this study, we have a better understanding of what these compounds are doing to counteract oxidative stress.

The work adds to a pipeline of molecular clinical and pre-clinical drug candidates for the treatment of oxidative stress and serves as a good starting point for researchers to find similar compounds, Hannink said.

The early-stage results of this research are promising. If additional studies, including animal studies, are successful within the next few years, these compounds may be tested in human clinical trials with the hope of developing new treatments for diseases that are characterized by the over-production of free radicals and oxidative stress.

The research, “Induction of Heme Oxygenase I (HMOX1) by HPP-4382: A Novel Modulator of Bach1 Activity” was published in PLOS One with funding from High Point Pharmaceuticals.

Editor’s Note: For a longer version of this story, please visit: “The search for oxidative stress treatment continues.”

Media Contact

Jeff Sossamon Eurek Alert!

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

In a field where smaller is better, researchers discover the world’s tiniest antibodies

Researchers at the University of Bath in the UK and biopharma company UCB have found a way to produce miniaturised antibodies, opening the way for a potential new class of treatments for…

Researchers create artificial lung to support pre-term babies in distress

An international team led by current and former McMaster University researchers has developed an artificial lung to support pre-term and other newborn babies in respiratory distress. The group has proven…

Graphite instead of gold: Thin layers for better hydrogen cars

Innovative coating for bipolar plates in fuel cells. Electric cars which can be filled up within five minutes, reach ranges like a diesel and yet drive “cleanly”: This is already…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close