Using waste to recover waste uranium

The same technology can also be used to clean up nuclear waste. Professor Lynne Macaskie, this week (7-10 September), presented the group's work to the Society for General Microbiology's meeting at Heriot-Watt University, Edinburgh.

Bacteria, in this case, E. coli, break down a source of inositol phosphate (also called phytic acid), a phosphate storage material in seeds, to free the phosphate molecules. The phosphate then binds to the uranium forming a uranium phosphate precipitate on the bacterial cells that can be harvested to recover the uranium.

This process was first described in 1995, but then a more expensive additive was used and that, combined with the then low price of uranium, made the process uneconomic. The discovery that inositol phosphate was potentially six times more effective as well as being a cheap waste material means that the process becomes economically viable, especially as the world price of uranium is likely to increase as countries move to expand their nuclear technologies in a bid to produce low-carbon energy.

As an example, if pure inositol phosphate, bought from a commercial supplier is used, the cost of this process is £1.72 per gram of uranium recovered. If a cheaper source of inositol phosphate is used (eg calcium phytate) the cost reduces to £0.09 for each gram of recovered uranium. At 2007 prices, uranium cost £0.211/g; it is currently £0.09/g. These prices make the process economic overall because there is also an environmental protection benefit. Use of low-grade inositol phosphate from agricultural wastes would bring the cost down still further and the economic benefit will also increase as the price of uranium is forecast to rise again.

“The UK has no natural uranium reserves, although a significant amount of uranium is produced in nuclear wastes. There is no global shortage of uranium but from the point of view of energy security the EU needs to be able to recover as much uranium as possible from mine run-offs (which in any case pollute the environment) as well as recycling as much uranium as possible from nuclear wastes,” commented Professor Macaskie, “By using a cheap feedstock easily obtained from plant wastes we have shown that an economic, scalable process for uranium recovery is possible”.

Media Contact

Dianne Stilwell EurekAlert!

More Information:

http://www.sgm.ac.uk

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors