Jet engine lubrication oils are a major source of ultrafine particles

Lubricating oil in the hot exhaust gases of aircraft turbines can form ultra-fine dust particles as soon as the exhaust gases cool down.
(c) Alexander Vogel / Goethe University Frankfurt

Measurements conducted by the Hessian Agency for Nature Conservation, Environment and Geology (HLNUG) in recent years have shown that Frankfurt International Airport is a major source of ultrafine particles and that these can disperse over long distances across the city.

In collaboration with experts at the HLNUG, researchers at Goethe University Frankfurt have now discovered that the ultrafine particles partly consist of synthetic jet oils. The research team has deduced that emissions from lubrication oils must be lowered in addition to those from kerosene in order to reduce the concentration of ultrafine particles and thus improve air quality.

Ultrafine particles form during combustion processes, for example when wood or biomass is burned, as well as in power and industrial plants. Alongside road traffic, large airports are a major source of these ultrafine particles, which are less than 100 millionths of a millimetre (100 nanometres) in size. Because they are so small, they can penetrate deep into the lower respiratory tract, overcome the air-blood barrier and, depending on their composition, cause inflammatory reactions in the tissue, for example. What’s more, ultrafine particles are suspected of being capable of triggering cardiovascular diseases.

Since several years, the Hessian Agency for Nature Conservation, Environment and Geology (HLNUG) has been measuring the number and size of ultrafine particles at various air monitoring stations in the vicinity of Frankfurt International Airport, for example in the Frankfurt suburb of Schwanheim and in Raunheim. Last year, scientists led by Professor Alexander Vogel at Goethe University Frankfurt analysed the chemical composition of the ultrafine particles and came across a group of organic compounds which, according to their chemical fingerprints, originated from aircraft lubrication oils.

The research team has now corroborated this finding by means of further chemical measurements of the ultrafine particles: the particles originated to a significant degree from synthetic jet oils and were particularly prevalent in the smallest particle classes, i.e. particles 10 to 18 nanometres in size. Such lubrication oils can enter the exhaust plume of an aircraft’s engines, for example through vents where nanometre-sized oil droplets and gaseous oil vapours are not fully retained.

In laboratory experiments, the researchers also succeeded in reproducing the formation of ultrafine particles from lubrication oils. To this end, a common engine lubrication oil was first evaporated at around 300 °C in a hot gas stream, which simulated the exhaust plume of an aircraft engine, and subsequently cooled down. The number-size distribution of the freshly formed particles was then measured.

Alexander Vogel, Professor for Atmospheric Environmental Analytics at the Institute for Atmospheric and Environmental Sciences of Goethe University Frankfurt, explains: “When the oil vapour cools down, the gaseous synthetic esters are supersaturated and form the nuclei for new particles that can then grow fast to around 10 nanometres in size. These particles, as our experiments indicate, constitute a large fraction of the ultrafine particles produced by aircraft engines. The previous assumption that ultrafine particles originate primarily from sulphur and aromatic compounds in kerosene is evidently incomplete. According to our findings, lowering lubrication oil emissions from jet engines holds significant potential for reducing ultrafine particles.”

The experiments show that the formation of ultrafine particles in jet engines is not confined to the combustion of kerosene alone. Potential mitigation measures should take this into consideration. This means that using low-sulphur kerosene or switching to sustainable aviation fuel cannot eliminate all the pollution caused by ultrafine particles.

A comprehensive scientific study by the Federal State of Hesse, which will start in 2023, will examine pollution from ultrafine particles and their impact on health. In this context, the results from the current study can help to identify airport-specific particles and derive possible mitigation measures.

Wissenschaftliche Ansprechpartner:

Professor Alexander L. Vogel
Institute for Atmospheric and Environmental Sciences
Goethe Universität Frankfurt
Tel. +49 (0)69 798-40225
vogel@iau.uni-frankfurt.de
www.iau.uni-frankfurt.de

Originalpublikation:

Florian Ungeheuer, Lucía Caudillo, Florian Ditas, Mario Simon, Dominik van Pinxteren, Dogushan Kilic, Diana Rose, Stefan Jacobi, Andreas Kürten, Joachim Curtius, Alexander L. Vogel: Nucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles. Communications Earth & Environment (2022) https://doi.org/10.1038/s43247-022-00653-w

https://www.uni-frankfurt.de

Media Contact

Dr. Markus Bernards Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (1)

Write a comment

  1. I’ve been consulting to all industries a BioBased all Botanical fluid technology that stops frictional contacting mechanical wear and the product is called HDI-2500. By stopping and sustaining wear, the wear ultra fine metals are arrested from entering the environment causing health hazards. I would love to show you my work. You’ll be astounded. It can be put into jet engines and stop the ultra fine particulates.

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors