Variable southeast summer rainfall linked to climate change

And that intensification appears to be coming from global warming, according to a new analysis by a Duke University-led team of climate scientists.

The NASH is an area of high pressure that forms each summer near Bermuda, where its powerful surface center helps steer Atlantic hurricanes and plays a major role in shaping weather in the eastern United States, Western Europe and northwestern Africa.

By analyzing six decades of U.S. and European weather and climate data, the team found that the center of the NASH intensified by 0.9 geopotential meters a decade on average from 1948 to 2007. (Geopotential meters are used to measure how high above sea level a pressure system extends; the greater the height, the greater the intensity.)

The team's analysis found that as the NASH intensified, its area grew, bringing the high's weather-making western ridge closer to the continental United States by 1.22 longitudinal degrees a decade.

“This is not a natural variation like El Nino,” says lead author Wenhong Li, assistant professor of earth and ocean sciences at Duke University's Nicholas School of the Environment. “We thoroughly investigated possible natural causes, including the Atlantic Multivariate Oscillation (AMO) and Pacific Decadal Oscillation (PDO), which may affect highs, but found no links.

“Our analysis strongly suggests that the changes in the NASH are mainly due to anthropogenic warming,” she says.

An early online edition of the study, published in the Journal of Climate, is available at the American Meteorological Society's website at http://journals.ametsoc.org/doi/pdf/10.1175/2010JCLI3829.1.

As the NASH intensified and migrated westward, Li's team's analysis found that its north-south movement also was enhanced from 1978 to 2007, a period when the frequency of extreme summer rainfall variability in the Southeast more than doubled over the previous 30 years. From 1978 to 2007, six summers were abnormally wet, while five were abnormally dry. Those 11 summers – defined in this study as the months of June, July and August – had total seasonal precipitation anomalies greater than one standard deviation from the mean.

To forecast future trends in the NASH's intensity, the team used climate models developed for use by the Intergovernmental Panel on Climate Change's Fourth Assessment Report in 2007. The models – known as Coupled Model Intercomparison Project Phase 3 (CMIP3) models – predict the NASH will continue to intensify and expand as concentrations of carbon dioxide and other greenhouse gases increase in Earth's atmosphere in coming decades.

“This intensification will further increase the likelihood of extreme summer precipitation variability – periods of drought or deluge – in southeastern states in coming decades,” Li says.

If the NASH 's western ridge jogs a little to the north as it expands, the likelihood increases for more extreme dry weather in the Southeast that summer, she explains. If the NASH wobbles a little to the south, extreme wet weather becomes more likely.

Li's coauthors are Laifong Li of Duke University; Rong Fu of the University of Texas at Austin; Yi Deng of the Georgia Institute of Technology; and Hui Wang of the National Atmospheric and Oceanic Administration's Climate Prediction Center in Camp Spring, Md., and Wyle Information Systems in McLean, Va.

In addition to long-term rainfall data and the CMIP3 models, the team conducted the study on atmospheric reanalysis data from the U.S. National Center for Environmental Prediction/National Center for Atmospheric Research and the European Centre for Medium-Range Weather Forecasts.

Funding for the study came from Duke University and the Nicholas School Office of the Dean.

Media Contact

Tim Lucas EurekAlert!

More Information:

http://www.duke.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors