Ocean salinities show an intensified water cycle

The stronger water cycle means arid regions have become drier and high rainfall regions wetter as atmospheric temperature increases.

The study, co-authored by CSIRO scientists Paul Durack and Dr Susan Wijffels, shows the surface ocean beneath rainfall-dominated regions has freshened, whereas ocean regions dominated by evaporation are saltier. The paper also confirms that surface warming of the world’s oceans over the past 50 years has penetrated into the oceans’ interior changing deep-ocean salinity patterns.

“This is further confirmation from the global ocean that the Earth’s water cycle has accelerated,” says Mr Durack – a PhD student at the joint CSIRO/University of Tasmania, Quantitative Marine Science program.

“These broad-scale patterns of change are qualitatively consistent with simulations reported by the Intergovernmental Panel on Climate Change (IPCC).

“While such changes in salinity would be expected at the ocean surface (where about 80 per cent of surface water exchange occurs), sub-surface measurements indicate much broader, warming-driven changes are extending into the deep ocean,” Mr Durack said.

The study finds a clear link between salinity changes at the surface driven by ocean warming and changes in the ocean subsurface which follow the trajectories along which surface water travels into the ocean interior.The study finds a clear link between salinity changes at the surface driven by ocean warming and changes in the ocean subsurface which follow the trajectories along which surface water travels into the ocean interior.

The ocean's average surface temperature has risen around 0.4ºC since 1950. As the near surface atmosphere warms it can evaporate more water from the surface ocean and move it to new regions to release it as rain and snow. Salinity patterns reflect the contrasts between ocean regions where the oceans lose water to the atmosphere and the others where it is re-deposited on the surface as salt-free rainwater.

“Observations of rainfall and evaporation over the oceans in the 20th century are very scarce. These new estimates of ocean salinity changes provide a rigorous benchmark to better validate global climate models and start to narrow the wide uncertainties associated with water cycle changes and oceanic processes both in the past and the future – we can use ocean salinity changes as a rain-gauge,” Mr Durack said.

Based on historical records and data provided by the Argo Program's world-wide network of ocean profilers – robotic submersible buoys which record and report ocean salinity levels and temperatures to depths of two kilometres – the research was conducted by CSIRO's Wealth from Oceans Flagship and partially funded by the Australian Climate Change Science Program. Australia’s Integrated Marine Observing System is a significant contributor to the global Argo Program.

CSIRO initiated the National Research Flagships to provide science-based solutions to Australia’s major research challenges and opportunities. The 10 Flagships form multidisciplinary teams with industry and the research community.

Media Contact

Craig Macaulay EurekAlert!

More Information:

http://www.csiro.au

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors