Most of Earth's carbon was hidden in the core during its formative years

A team of scientists reports March 30 in the journal Proceedings of the National Academy of Sciences how carbon behaved during Earth's violent formative period. The findings can help scientists understand how much carbon likely exists in the planet's core and the ways it influences chemical and dynamic activities that shape the world, including the convective motion that powers the magnetic field that protects Earth from cosmic radiation. The team's lab experiments compared carbon's compatibility of silicates that comprise the Earth's mantle (outer circle) to its compatibility with the iron that comprises the planet's core (inner circle). The lab experiments were conducted under conditions mimicking the Earth's interior during its formative period. They found that more carbon would have stayed in the mantle than previously thought. Credit: Rebecca Fischer Usage Restrictions: News media use of this photo in association with this study is permitted.

Now, a team of scientists reports March 30 in the journal Proceedings of the National Academy of Sciences how carbon behaved during Earth's violent formative period. The findings can help scientists understand how much carbon likely exists in the planet's core and the ways it influences chemical and dynamic activities that shape the world, including the convective motion that powers the magnetic field that protects Earth from cosmic radiation.

The research team included Elizabeth Cottrell, the Smithsonian's National Museum of Natural History curator of rocks and ores; former museum fellow Marion Le Voyer; Harvard University professor and former museum fellow Rebecca Fischer; Yale University's Kanani Lee; and Carnegie Institution for Science's late Erik Hauri, to whom the paper is dedicated.

Earth's core is comprised mostly of iron and nickel, but its density indicates the presence of other lighter elements, such as carbon, silicon, oxygen, sulfur or hydrogen. It has been long suspected that there is a tremendous reservoir of carbon hidden in the core.

In an effort to quantify the amount of carbon in the core, the research team turned to laboratory experiments that mimic the conditions of the Earth's formation to understand how carbon got there in the first place.

“To understand present day Earth's carbon content, we went back to our planet's babyhood, when it accreted from material surrounding the young sun and eventually separated into chemically distinct layers–core, mantle and crust,” Fischer said. “We set out to determine how much carbon entered the core during these processes.”

This was accomplished by lab experiments that compared carbon's compatibility with the silicates that comprise the mantle to its compatibility with the iron that comprises the core. These lab experiments were conducted under the extreme pressures and temperatures found deep inside the Earth during its formative period.

“We found that more carbon would have stayed in the mantle than we previously suspected,” Cottrell said. “This means the core must contain significant amounts of other lighter elements, such as silicon or oxygen, both of which become more attracted to iron at high temperatures.”

Despite this surprising discovery, the vast majority of Earth's total carbon inventory does likely exist down in the core. Even so, it only makes up a negligible fraction of the core's overall composition.

Tim McCoy, the museum's curator of meteorites who was not involved in the study, said, “This study provides compelling evidence that carbon-rich meteorites like those known from our collections delivered most of Earth's carbon when our planet first formed, with only a small percentage of carbon perhaps delivered by late-impacting asteroids or comets.”

###

This work was supported by a National Science Foundation postdoctoral fellowship. It was performed, in part, under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory.

Media Contact

Ryan Lavery
laveryr@si.edu
202-230-4623

http://www.si.edu 

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors