How does snow affect the amount of water in rivers?

The study by PhD student Wouter Berghuijs and Dr Ross Woods, Senior Lecturer in Water and Environmental Engineering in the Department of Civil Engineering at the University of Bristol together with a colleague from Delft University of Technology is published online in Nature Climate Change.

The researchers, using historical data from several hundred river basins located across the United States, investigated the effect of snow on the amount of water that rivers discharge.

How river flow is generated in snowy areas is poorly understood due to the difficulty in getting appropriate measurements. Previous studies have mostly focused on the role of snowfall for the within-year distribution of streamflow – how much water is there in the river during a particular period of the year – and assumed that there was no important effect of snow on the average streamflow. This study is the first to focus on the role of snow for how much water is on average available in rivers.

With data from 420 catchments located throughout the United States the researchers show that snowiness is an important factor for the average river discharge.

Global warming is very likely to reduce the amount of snow significantly in snow-affected catchments, even if temperatures rise only two degrees Celsius. The new research suggests that the amount of water in rivers will be reduced as a result of the decrease in snow.

The authors of the study said: “With more than one-sixth of the Earth's population depending on meltwater for their water supply, and ecosystems that can be sensitive to streamflow alterations, the socio-economic consequences of a reduction in streamflow can be substantial.

“Our finding is particularly relevant to regions where societally important functions, such ecosystem stability, hydropower, irrigation, and industrial or domestic water supply are derived from snowmelt.”

Given this importance of streamflow for society, the researchers propose that further studies are required to respond to the consequences of a temperature-induced precipitation shift from snow to rain.

###

Paper: A precipitation shift from snow towards rain leads to a decrease in streamflow, W. R. Berghuijs, R. A.Woods and M. Hrachowitz, Nature Climate Change, Vol 4, June 2014.

Notes to editors:

About Nature Climate Change

Nature Climate Change is a monthly journal dedicated to publishing cutting-edge research on the science of climate change, its impacts and wider implications for the economy, society and policy and is currently ranked as the top journal in environmental research.

Media Contact

Joanne Fryer Eurek Alert!

More Information:

http://www.bristol.ac.uk

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors