Global Warming Reaches Central Greenland

Ice cores
Credit: S. Kipfstuhl / Alfred-Wegener-Institut / S. Kipfstuhl

At high elevations of the Greenland Ice Sheet, the years 2001 to 2011 were 1.5 °C warmer than in the 20th century and represent the warmest decade in the last thousand years.

A temperature reconstruction from ice cores of the past 1,000 years reveals that today’s warming in central-north Greenland is surprisingly pronounced. The most recent decade surveyed in a study, the years 2001 to 2011, was the warmest in the past 1,000 years, and the region is now 1.5 °C warmer than during the 20th century, as researchers led by the Alfred Wegener Institute just report in the journal Nature. Using a set of ice cores unprecedented in length and quality, they reconstructed past temperatures in central-north Greenland and melting rates of the ice sheet.

The Greenland Ice Sheet plays a pivotal part in the global climate system. With enormous amounts of water stored in the ice (about 3 million cubic kilometres), melt and resulting sea-level rise is considered a potential tipping point. For unmitigated global emissions rates (‘business as usual’), the ice sheet is projected to contribute up to 50 centimetres to global mean sea-level by 2100. Weather stations along the coast have been recording rising temperatures for many years. But the influence of global warming on the up to 3,000 m elevated parts of the ice sheet have remained unclear to due to the lack of long-term observations. In a study now published in Nature, experts from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) present clear evidence that effects of global warming have reached the remote, high-elevation areas of central-north Greenland.

“The time series we recovered from ice cores now continuously covers more than 1,000 years, from year 1000 to 2011. This data shows that the warming in 2001 to 2011 clearly differs from natural variations during the past 1,000 years. Although grimly expected in the light of global warming, we were surprised by how evident this difference really was,” says AWI glaciologist Dr Maria Hörhold, lead author of the study. Together with colleagues from AWI and the University of Copenhagen’s Niels Bohr Institute, she analysed the isotope composition in shallow ice cores gathered in central-north Greenland during dedicated AWI expeditions.

Previous ice cores obtained at co-located sites starting in the 1990s, did not indicate clear warming in central-north Greenland, despite rising global mean temperatures. Part of the reason is substantial natural climate variability in the region.

The AWI researchers have now extended the previous datasets up to winter 2011/2012 by a dedicated redrilling effort, recovering time series unprecedented length and quality. The temperatures were reconstructed by using consistently one single method for the entire record in the lab: measuring concentrations of stable oxygen isotopes within the ice, which vary with the temperatures prevailing at times of ice formation. Previous studies had to draw on a range of different climate archives and combine results to reconstruct temperature, introducing much larger uncertainties in the assessment of natural variability.

In addition to the temperature, the team reconstructed the melt production of the ice sheet. Melting has increased substantially in Greenland since the 2000s and now significantly contributes to global sea-level rise. “We were amazed to see how closely temperatures inland are connected to Greenland-wide meltwater drainage – which, after all, occurs in low-elevation areas along the rim of the ice sheet near the coast,” says Maria Hörhold.

In order to quantify this connection between temperatures in high-elevation parts and melting along the edges of the ice sheet, the authors used data from a regional climate model for the years 1871 to 2011 and satellite observations of ice-mass changes for the years 2002 to 2021 from the GRACE/GRACE-FO gravimetry missions. This allowed them to convert the temperature variations identified in the ice cores into melting rates and provide estimates for the past 1,000 years. This represents an important dataset for climate research: better understanding of the melt dynamics of the ice sheet in the past improves projections of related future sea-level rise; reduced uncertainties in projections is one step to help optimize adaptation measures.

Another exciting finding from the study: the climate of the Greenland Ice Sheet is largely decoupled from the rest of the Arctic. This could be shown in comparison with the Arctic-wide temperature reconstruction ‘Arctic 2k’ (https://www.nature.com/articles/sdata201426). Although ‘Arctic 2k’ is an accurate representation of the circumpolar region, it does not reflect the conditions in central Greenland. “Our reconstruction now offers a robust representation of temperature evolution in central Greenland, which has proven to have a dynamic of its own,” says Prof. Thomas Laepple, AWI climate researcher and co-author of the study. “Actually, we had expected the time series to strongly covary with the warming of the Arctic region,” Laepple reports. But the authors have an explanation for these differences: the ice sheet is several kilometres thick; because of its height, Greenland is more affected by atmospheric circulation patterns than other parts of the Arctic. Temperature time series on the Arctic with regional resolution are needed, says Laepple, in order to reliably describe climate change in the Arctic.

Original publication:
Hörhold, M., Münch, T., Weißbach S., Kipfstuhl S., Freitag J., Sasgen I., Lohmann G., Vinther B., T. Laepple: Modern temperatures in central-north Greenland warmest in past millennium (Nature, 2022). DOI: 10.1038/s41586-022-05517-z

Your scientific contact persons are:

• Dr Maria Hörhold (tel.: +49 471 4831 2135, e-mail: Maria.Hoerhold(at)awi.de)
• Prof. Dr Thomas Laepple (tel.: +49 331 58174 5602, e-mail: Thomas.Laepple(at)awi.de)

In the press office of the Alfred Wegener Institute, you will be supported by
• Dr Folke Mehrtens (tel.: +49 471 4831 2007; e-mail: media(at)awi.de)

Printable images can be found in our media library at: https://bit.ly/3iykrXa and, after expiry of the embargo period, at: https://bit.ly/3Xo19Cv

Video footage (to be cited as: Alfred Wegener Institute/CNN) of the ice core drilling on Greenland in 2012 can be found here: https://we.tl/t-FtVEoWHH6Q

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media), Instagram (https://www.instagram.com/awiexpedition/), and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Originalpublikation:

https://www.nature.com/articles/s41586-022-05517-z

Weitere Informationen:

https://www.awi.de/en/about-us/service/press.html

Media Contact

Folke Mehrtens Kommunikation und Medien
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors