Ring-sheared drop experiment on ISS expanded

RPI's ring-sheared drop experiment on the International Space Station
Credit: Rensselaer Polytechnic Institute

New NSF grant supports ongoing research into proteins.

Rensselaer Polytechnic Institute (RPI) researchers Amir Hirsa, professor of mechanical, aerospace, and nuclear engineering, and Patrick Underhill, professor of chemical and biological engineering, have received a new three-year grant from the National Science Foundation (NSF) for $452,847 to study the physics of protein solutions using the ring-sheared drop module aboard the International Space Station. The grant starts on August 1, almost 10 years from the start of the ongoing NASA grant that initiated this technology.

The ring-sheared drop concept requires a microgravity environment, like the one found on orbit, where surface tension alone can hold a volume of liquid together. The team was looking for a way to study fluid dynamics without interference from the solid walls of a container, which would typically be necessary to hold a fluid being studied on Earth.

Proteins are large, flexible macromolecules that perform a vast range of functions within living organisms. Their functions span from copying genetic material to providing structural integrity to cells and organisms. Because of their size, flexibility, and biochemistry, proteins can undergo structural changes that dictate their function, or sometimes cause disease.

The ability to understand and predict how the conditions that proteins experience affect their structure and conformation, and in turn their functioning in solution, is a holy grail in science, according to Hirsa. This work will be used for the development of predictive models for both fundamental science and industry, including development of first-principle models and manufacturing of pharmaceuticals.

The purpose of the new grant is to gain deeper scientific understanding of protein association, aggregation, and gelation in systems with high protein concentration in the presence of free surfaces.

View the experiment.

About Rensselaer Polytechnic Institute:

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, over 30 research centers, more than 140 academic programs including 25 new programs, and a dynamic community made up of over 6,800 students and 110,000 living alumni. Rensselaer faculty and alumni include upwards of 155 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit www.rpi.edu.

Contact: 
Tracey Leibach
Director of Periodicals and Editorial Content
(518) 369-0087
leibat@rpi.edu

For general inquiries: newsmedia@rpi.edu

Visit the Rensselaer research and discovery blog: https://everydaymatters.rpi.edu/

Follow us on Twitter: @RPINews

Media Contact

Katie Malatino
Rensselaer Polytechnic Institute
malatk@rpi.edu
Cell: 838-240-5691

Media Contact

Katie Malatino
Rensselaer Polytechnic Institute

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors