Cornell researchers turn conventional thinking about canned corn on its ear

Canned corn may be healthier for you than corn on the cob, according to a study by Cornell University scientists. The researchers say that heat processing of sweet corn significantly raises the level of naturally occurring compounds that help fight disease.

The findings are reported in the August 14 issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

Sweet corn is the number-two processed vegetable in the United States, second only to tomatoes, according to Rui Hai Liu, M.D., Ph.D., assistant professor of food science at Cornell University and lead author of the paper.

The study shows that heat processing of sweet corn, which is how canned corn is prepared, increases both total antioxidant activity and the level of phenolics — a naturally occurring type of phytochemical found in many fruits and vegetables. Heating sweet corn, whether it is on the cob, in a casserole, or in the can, enhances its beneficial compounds, Liu noted.

Processing at 115 degrees Celsius for 25 minutes elevated total phenolics by 32 percent, with ferulic acid — the predominant phenolic compound in sweet corn — increasing by 550 percent.

“It’s conventional wisdom that processed fruits and vegetables have lower nutritional value than sweet fresh produce,” Liu said. This is because processing leads to a decrease in vitamin C — an antioxidant that prevents cell and tissue damage and purportedly gives fruits and vegetables their disease-preventing abilities.

But Liu’s ongoing investigation of fruits and vegetables contradicts conventional wisdom.

In one study, published two years ago in Nature, Liu and his team found that less than 0.4 percent of an apple’s antioxidant activity comes from vitamin C. Instead, a combination of phytochemicals supplies the antioxidants in apples. This led Liu to suspect that processed fruits and vegetables might actually maintain their antioxidant activity despite the loss of vitamin C.

Earlier this year, in another study published in the Journal of Agricultural and Food Chemistry, the researchers reported more evidence that processing is beneficial. They found that cooking tomatoes triggers a rise in total antioxidant activity, chiefly due to an increase in lycopene — a phytochemical that makes tomatoes red.

The findings are obviously good for the processing industry, Liu said, but they are also good for the consumer: “It doesn’t matter if it’s raw; it doesn’t matter if it’s cooked; it doesn’t matter if it’s fresh; it doesn’t matter if it’s processed. You simply need to eat a variety of fruits and vegetables to get maximum health benefits.”

Liu’s coauthors were Cornell graduate student Veronica Dewanto and a visiting fellow in Liu’s laboratory, Xianzhong Wu. The research was funded by Cornell University and the United States Department of Agriculture’s Federal Formula Fund.

Media Contact

Beverly Hassell EurekAlert!

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Faster, more energy-efficient way to manufacture an industrially important chemical

Zirconium combined with silicon nitride enhances the conversion of propane — present in natural gas — needed to create in-demand plastic, polypropylene. Polypropylene is a common type of plastic found…

Energy planning in Ghana as a role model for the world

Improving the resilience of energy systems in the Global South. What criteria should we use to better plan for resilient energy systems? How do socio-economic, technical and climate change related…

Artificial blood vessels could improve heart bypass outcomes

Artificial blood vessels could improve heart bypass outcomes. 3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases. Strong, flexible, gel-like tubes…

Partners & Sponsors