Building better barley

The 2012 growing season was considered an average year on the Canadian Prairies, “but we still had a summer water deficit, and it is that type of condition we are trying to work with,” said Scott Chang, a professor of soil science in the University of Alberta's Department of Renewable Resources in Edmonton, Canada.

Chang teamed with fellow crop scientist Anthony Anyia of Alberta Innovates – Technology Futures in 2006, following a severe drought in 2002 that dropped average crop yield in Alberta by about half.

They are exploring the genetic makeup of barley and how the grain crop—a Canadian staple used for beer malt and animal feed—can be made more efficient in its water use and more productive. One of their latest studies, published in the journal Theoretical and Applied Genetics, explores how to increase yield in barley crops while using less water.

By studying the carbon isotope compositions of barley plants and their relationship with water-use efficiency, the researchers developed tools that plant breeders can use to improve selection efficiency for more water-efficient varieties. The latest findings stem from an ongoing collaboration that is ultimately aimed at bringing farmers a more stable breed of the plant that has less reliance on water and is less vulnerable to climate change.

To arrange an interview or for a link to the study contact:
Bev Betkowski, media relations associate
University of Alberta
780-492-3808
bev.betkowski@ualberta.ca

Media Contact

Bev Betkowski EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors