White dwarf and ultra-cool dwarf keep their distance

Avril Day-Jones, who is presenting results at the RAS National Astronomy Meeting in Preston, said, “This is a record breaking discovery for a system of this kind. In the other few binary cases that are known, the objects are relatively close together. In this new system, the objects are 600 billion kilometres apart which is hundreds of times wider.”

The group from Hertfordshire believes that the two objects formed at roughly the same time and were originally much closer together. During the death-throes of the white dwarf’s progenitor star, forces induced when gas and dust from the star were thrown off into space caused the ultra-cool dwarf spiral out to its remote position.

Miss Day-Jones said, “Ultra-cool dwarfs are elusive objects and we don’t know that much about them. This type of binary allows us to use our knowledge of white dwarfs, which we understand quite well, to infer properties of the ultra-cool dwarf, such as the temperature, surface gravity, mass and age. We need to discover more of this type of binary system if we want to improve our understanding of ultra-cool dwarfs.”

Media Contact

Anita Heward alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors