Study challenges belief that tree frogs depress metabolic rate after 'waxing' themselves

Many amphibians have skin that offers little resistance to evaporative water loss. To compensate, these and some other arboreal frogs secrete lipids and then use an elaborate series of wiping motions to rub the waxy secretions over their entire bodies.

“This self-wiping is a complex behaviour involving the use of all four limbs to stroke or rub all dorsal and ventral body surfaces, including the limbs,” explains Nadia A. Gomez (University of Florida, Gainesville) and her coauthors. They continue: “Thus, the animal is protected from dehydration, provided the external film of lipids is not physically disrupted by movements or other disturbance.”

Tree frogs characteristically go into a resting posture after wiping themselves, tucking their limbs tightly against or beneath their body and closing their eyes. The researchers found that this series of actions following “waxing” allows tree frogs (Phyllomedusa hypochondrialis) to limit rates of surface evaporation to as little as 4 percent of that from a free water surface in the same environment.

To examine the question of dormancy, the researchers found that waxed and inactive frogs had about the same metabolic rate as unwaxed, dehydrating frogs. This suggests that waxed frogs are not in a hibernation-like dormant state, as was previously thought. (Some frogs, however, showed moderate reductions of metabolic rate as dehydration advanced, suggesting that they might become dormant during, for example, a prolonged drought.)

“Our data do not provide strong evidence that P. hypochondrialis routinely depress metabolic rates and enter a deep dormant state during quiescent behaviours following wiping,” explain the authors. “Moreover, quiescent Phyllomedusa remain responsive to [the] presence of insects and eat readily.”

Media Contact

Suzanne Wu EurekAlert!

More Information:

http://www.uchicago.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors