Scientists develop a new way to identify good fat

Right now, it is hard for researchers to spot brown fat cells at the molecular level, which is hindering efforts to harness their ability to guard against obesity. To address that issue, scientists developed a brown fat detection method and it worked in an animal model. This proof-of-concept study is published today in Nature Communications.

“Brown adipose tissue, responsible for heat generation, has high importance in the context of metabolic diseases. Brown fat is more common in children but has recently been discovered in adult humans. However, measurement of its body distribution has remained technically challenging. We report a peptide probe that zeroes in on brown fat and can be used for localization of this tissue in mice by whole body imaging,” said Mikhail Kolonin, Ph.D., the study’s senior author and associate professor at the UTHealth Center for Stem Cell & Regenerative Medicine. He receives support from a John S. Dunn Research Scholar Fund and is holder of the Jerold B. Katz Distinguished Professorship in Stem Cell Research at UTHealth.

If this brown fat detection strategy proves effective in clinical trials, it could allow doctors to personalize treatments based on the ratio of brown fat to white fat of their patients. Further, it might help monitor stimulation of brown fat through prospective therapies.

“This is the first targeted imaging approach for the detection of brown fat,” Kolonin said.

Kolonin teamed up with UTHealth medical imaging researcher Eva Sevick-Muraca, Ph.D., to develop a near-infrared fluorescence imaging probe that binds to brown adipose vasculature and emits tiny amounts of skin-penetrating light that can be picked up by highly sensitive cameras. Sevick-Muraca is professor, director of the Center for Molecular Imaging and holder of the Nancy and Rich Kinder Distinguished Chair in Cardiovascular Disease Research at UTHealth.

The probe is a peptide comprised of a series of amino acids. Kolonin’s team tested numerous combinations before finding one that selectively localizes to brown fat when administered intravenously. Sevick-Muraca’s team coupled the peptide with a dye that could be picked up during whole body scans.

Other UTHealth Medical School contributors include co-lead authors Ali Azhdarinia, Ph.D., and Alexes Daquinag, Ph.D., and co-author Sukhen Ghosh, Ph.D. Contributing from The University of Texas Graduate School of Biomedical Sciences at Houston was graduate student Chieh Tseng.

Kolonin and Sevick-Muraca operate laboratories in the UTHealth Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases and are on the faculty of the graduate school.

The study titled “A peptide probe for targeted brown adipose tissue imaging” received support from National Institutes of Health (1R21DK090752).

Rob Cahill

Media Contact

Robert Cahill EurekAlert!

More Information:

http://www.uth.tmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors