Membrane with valve mechanism for organ transplantation

In transplantation, the acute event of ischemia-reperfusion is associated with considerable inflammation and edema in the allograft. This leads to edemarelated increase in tissue pressure resulting in microcirculatory impairment and tissue damage. Increased tissue pressure plays an important pathophysiological role that further aggravates organ damage and prevents regenerative processes. As a consequence, potentially effective therapies cannot exert their beneficial effects.

In a preclinical model, the decompressive treatment by incision of the kidney capsule was shown to cause pressure relief and enable functional recovery and significantly improve kidney function following renal ischemia-reperfusion injury. It was also shown that pressure relief by decompression therapy is required to exploit the beneficial effects of cell therapy for enhanced longterm outcome. As decompressive treatment leads to improved blood flow, the delivery of protective agents and immunosuppressives to the sites of action is be facilitated. This results not only in enhanced efficacy, but also in a dose reduction of immunosuppressive drugs and a lower adverse effects profile. In regard to the application in humans, the closure of the incision site using a membrane with a valve mechanism is pivotal in order to minimize the risk of complications.

Further Information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Peer Biskup

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors