Circadian surprise: A heat sensor for body-clock synchronization

Although much is known about how light affects the body clock – also known at the circadian clock – it is not well understood which cells or organs sense daily temperature changes or how temperature signals reach the part of the brain that contains the circadian clock.

A variety of organisms, including insects and humans, have evolved an internal circadian clock to regulate patterns of behaviour throughout the day – for example sleep, appetite, alertness and concentration.

Senior study author Dr Ralf Stanewsky, from Queen Mary's School of Biological and Chemical Sciences, explains: “Given the substantial similarity between the fly and mammalian clock, our studies might also help to understand the human circadian clock and in the future perhaps contribute to developing treatments against the negative effects of sleep-disorders and shift-work.”

Specially evolved “clock cells” in the brain contain the circadian clock, which needs to be synchronised with the natural environmental cycles every day to prevent them running too fast or too slow.

Dr Stanewsky and colleagues have shown that fly brains were unable to synchronize to temperature cycles when separated from the rest of the body. This is in contrast with the ability to synchronize to light-dark cycles, which can take place with or without a connection to the fly body.

This study, reported today in the journal Neuron, identified a gene called nocte that, when altered, interferes with the fly's ability to synchronize its body clock using temperature signals. Importantly, disabling the nocte gene in nerve cells in the body also prevented the brain's ability to synchronize with temperature.

Dr Stanewsky's group wants to continue their studies on the fruit fly Drosophila and ultimately learn how the fly ensures perfect synchronisation of the circadian clock with the environment.

For more information, contact:

Simon Levey
Communications Officer
Queen Mary, University of London
Tel: +44 (0) 20 7882 5404 or +44 (0) 7740 346 737 (out of hours)
email: s.levey@qmul.ac.uk

Media Contact

Simon Levey EurekAlert!

More Information:

http://www.qmul.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors