Pucci-Tase – New deacetylase for the industrial production of high-quality chitosan

Chitosan has a broad spectrum of industrial applications ranging from contact lenses and matrices for tissue engineering to immobilisation membranes for enzymes and cells in biotechnological processes, feed additives and many others.

Production of high-quality chitosan from chitin requires a process that yields a product with defined degree of polymerisation and deacetylation. Chemical processes lead to such high-quality chitosan only after lengthy purification processes, which entail significant loss of product. A biological process can be much more specific. The invention discloses a gene encoding for a protein, which offers a new kind of deacetylase activity. This new chitin-deacetylase from Puccinia graminis can be applied to oligo and polymers of N-acetyl-glucosamin (GlcNAc). Activity can be influenced by choice of reaction parameters such as pH over a broad range, temperatures between 5° and 60°C as well as others. The reaction conditions may also be designed to reverse the process, i.e. resulting in acetylation of chitosan.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors