UBC researchers find first-ever 'wanderlust gene' in tiny bony fish

Measuring three to 10 centimetres, stickleback fish originated in the ocean but began populating freshwater lakes and streams following the last ice age. Over the past 15,000 years, freshwater sticklebacks have lost their bony lateral plates, or “armour,” in these new environments.

Scientists have identified a mutant form of a gene, or allele, that prohibits growth of armour and is commonly found in freshwater sticklebacks but exists in less than one per cent of their marine counterparts.

Now UBC PhD candidate Rowan Barrett and colleagues from UBC's Dept. of Zoology have found that the gene may also be contributing to the fish's tendency to relocate instead of adjusting to their surroundings – the first time a gene associated with this type of behaviour has been identified. Their findings are published today in the journal Biology Letters.

“Contrary to our assumption, the low-armour allele is not linked to a preference for fresh water, or low salinity,” says Barrett. “Instead, we found a strong association between having the allele and the fish's inclination to move into different salinities – a sort of 'wanderlust gene,' if you will – instead of staying put and acclimatizing to the current salinity.”

“The combination of physical and behavioural traits could explain why the low-armour allele keeps turning up during marine sticklebacks' 'invasion' of freshwater habitats,” says Barrett.

“The new behavioural association we've identified may also shed light on why there's still a small but constant population of armour-less sticklebacks in the sea despite the high predation there. Sticklebacks with the mutant allele just like to go to new places.”

Media Contact

Brian Lin EurekAlert!

More Information:

http://www.ubc.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors