Using Magnets to Help Prevent Heart Attacks

Rongjia Tao, professor and chair of physics at Temple University, has pioneered the use of electric or magnetic fields to decrease the viscosity of oil in engines and pipelines. Now, he is using the same magnetic fields to thin human blood in the circulation system.

Because red blood cells contain iron, Tao has been able to reduce a person’s blood viscosity by 20-30 percent by subjecting it to a magnetic field of 1.3 Telsa (about the same as an MRI) for about one minute.

Tao and his collaborator tested numerous blood samples in a Temple lab and found that the magnetic field polarizes the red blood cells causing them to link together in short chains, streamlining the movement of the blood. Because these chains are larger than the single blood cells, they flow down the center, reducing the friction against the walls of the blood vessels. The combined effects reduce the viscosity of the blood, helping it to flow more freely.

When the magnetic field was taken away, the blood’s original viscosity state slowly returned, but over a period of several hours.

“By selecting a suitable magnetic field strength and pulse duration, we will be able to control the size of the aggregated red-cell chains, hence to control the blood’s viscosity,” said Tao. “This method of magneto-rheology provides an effective way to control the blood viscosity within a selected range.”

Currently, the only method for thinning blood is through drugs such as aspirin; however, these drugs often produce unwanted side effects. Tao said that the magnetic field method is not only safer, it is repeatable. The magnetic fields may be reapplied and the viscosity reduced again. He also added that the viscosity reduction does not affect the red blood cells’ normal function.

Tao said that further studies are needed and that he hopes to ultimately develop this technology into an acceptable therapy to prevent heart disease.

Tao and his former graduate student, Ke “Colin” Huang, now a medical physics resident in the Department of Radiation Oncology at the University of Michigan, are publishing their findings in the journal, Physical Review E.

NOTE: Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple’s University Communications Office, 215/204-4380 or pmoretz@temple.edu.

Media Contact

Preston M. Moretz Newswise Science News

More Information:

http://www.temple.edu

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors