Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Release agent free demolding of components & heat and electricity conducting composite material

10.10.2013
At K 2013 in Düsseldorf (Hall 07, Stand B05) the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, will present FlexPLAS® release films and ReleasePLAS® coatings which allow effective demolding of components without the use of release agents.

Focus will also be put on a new polymer-metal composite material which is suitable for the structural monitoring of components or for seawater desalination applications.


Release agent free manufacture of very large components: Checking the deep-drawn fold-free FlexPLAS® release film on the mold for a CFRP aircraft fuselage section (© Fraunhofer IFAM).


Heat conducting composite pipes for seawater desalination (© Fraunhofer IFAM).

Effective and residue-free demolding, as well as coating

It is a process that is repeated hundreds of thousands of times a day in industry on a small scale: A component is manufactured using a mold and thereafter removed from the mold. New technologies from Fraunhofer IFAM, namely FlexPLAS® release films and ReleasePLAS® mold coating technology, allow effective demolding of components without the need to use release agents.

The FlexPLAS® release film technology was awarded the “AVK Innovation Prize 2012” and the “Composite Innovations Award 2013”. Features of these films are their extreme elasticity and durability. They can be stretched with little force and can even withstand extreme elongation of up to 300 percent without functionality impairment. This is ideal for fold-free application, even on curved or structured molds. The films can also be used manufacturing very large components made of fiber reinforced plastics (FRPs).

Following demolding, the components can be immediately coated without the need for complex pre-treatment. This is because there is no transfer of materials from the release film, meaning no costs are incurred removing contaminants or residues of release agents. The new technology also allows the in-mold coating of fiber composite components: This process is relatively easy and involves applying a gel coat to the FlexPLAS® release film. The degree of matt/gloss of the coated surface can be adjusted via the roughness of the FlexPLAS® release film that is employed. This coating technique significantly lowers the risk of coating defects. The production of the FRP component itself takes place on top of the coating. The in-mold coating and FRP component are cured together and the coated component with the release film is then removed from the mold. If the release film is kept on the component to the end of the manufacturing process or until delivery to the final customer, then it also serves as a protective film.

In contrast, the ReleasePLAS® coating is applied directly to the mold. It perfectly matches the surface structure and its properties can be adapted to various customer-specific requirements.

New composite material conduct heat and electricity

The new material is a mixture of plastic and metal, namely a “polymer-metal composite”. A wide range of polymers can be used as the matrix material for the composite. The material can therefore be readily customized for specific applications. Other advantages: The material is easy to process because of his plastic character. It is also light and conducts electricity and heat very effectively due to the high metal content.

The composite material is ideal for the structural monitoring of load-bearing components. When a component is exposed to loads, the electrical resistance of the composite changes. These signals can be transmitted via a cable on the component and then analyzed by a measuring instrument. The composite material is used in the form of heat-conducting pipes for seawater desalination. The principle of desalination: Seawater is sprayed onto pipes through which hot gas or water flows, so heating the pipes. Pure water evaporates from the seawater leaving behind a salty waste liquor.

Contact
K 2013 I October 16-23, 2013 I Düsseldorf I Germany
Hall 07 I Stand B05

Anne-Grete Becker | Fraunhofer-Institut
Further information:
http://www.ifam.fraunhofer.de

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>