Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process for application-specific anti-reflective coatings

03.06.2016

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, leading research institute for the development of surface technologies and organic electronics, is presenting the latest results in anti-reflective coatings at ICCG 2016 in Braunschweig, Germany from June 13-16, 2016 at booth B2.

Whether eyewear, windshields, display windows or solar cells – nearly everyone uses products that reduce reflections without being aware of it. These kinds of anti-reflective coatings provide on one hand crystal-clear viewing and on the other are able to capture nearly all the sunlight falling on solar cells coated this way, since there is practically no reflection on the surface.


Glass with an anti-reflection coating

© Fraunhofer FEP, Fotograf: Jürgen Lösel

These coatings, while hardly visible to users, offer a different kind of challenge to scientists when applied to various substrates like plastic films and rigid or flexible glass. The main focus when coating the substrate is to develop a coating process that is economical and can match the properties of the layers to the purpose of the specific application.

The researchers at Fraunhofer FEP have now tested a novel technology for creating anti-reflective coatings on glass. In a first step a gradient layer consisting of silicon dioxide (SiO2) and an additional supplementary component are deposited by means of a co-sputtering process. In a following process step the supplementary component is removed by an etching process. The result is a remnant layer of rough silicon dioxide. Thanks to the resultant continuous transition in optical properties from air to glass, anti-reflective behavior is exhibited by the surface of the glass.

A similar effect is offered by Fraunhofer FEP through its PolAR process for making plastic sheets or web anti-reflective. This process was originally developed jointly with Fraunhofer IOF and industrial partners. It nanoetches the surface of polymers directly by means of a plasma. The gradual transition in refractive index from air to polymer achieved this way is likewise anti-reflective.

In a conventional anti-reflective coating, layers of high and low refractive index are deposited of alternately. The disadvantage of this approach is the restricted wavelength range that its anti-reflective effect is confined to. The width of the range can only be broadened by use of a complex system of interferring layers. In contrast, anti-reflective coating systems based on effects caused by rough surfaces have no sharply defined wavelength restriction to their anti-reflective properties. This allows the prevention of reflection over a wide spectral range by coating with a single layer or a single plasma etching step, respectively. The color of the layers is also quite neutral.

“The layers achieved with the new process are characterized by a good mechanical durability and the reduction of reflections over a wide spectral range,” explains Thomas Preußner, researcher for large-area in-line processing at Fraunhofer FEP.

Anti-reflective coatings are only one application example for the described novel co-sputtered method. The technology has demonstrated the feasibility for producing rough layers thus having the possibility to be applied in additional kinds of applications. It offers the potential of making battery and solar-cell electrodes larger and more effective through the use of rough layers, for example.

The comprehensive scientific know-how and proto-industrial facilities at Fraunhofer FEP enable specialized anti-reflective coatings to be developed in cooperation with clients matching their specific applications.

Fraunhofer FEP at ICCG 2016

Talks
Tuesday, June 14
Session 4 – Processes for Flexible Substrates
14:50 – 15:10, Invited Lecture
The Road from S2S to R2R - Status, Risks and Visions for Processing Ultra-Thin Glass
Dr. Manuela Junghähnel

Session 4 – Processes for Flexible Substrates
16:30 – 16:50
Roll-to-Roll Deposition of Silicon Nitride Permeation Barrier Coatings Using Rotatable Magnetrons
Dr. Matthias Fahland

Wednesday, June 15
Session 7 – Optics, Consumer Electronics, and Communication
15:50 – 16:10
Towards Tunable Thin-Film Filters with the Use of Liquid Crystals
Dr. Hagen Bartzsch

Posters
P1.01
Coatings with large surface roughness prepared by a co-sputtering method using dual rotatable magnetrons
Authors: T. Preußner, M. Junghähnel, U. Hartung, T. Kopte
Fraunhofer FEP, Germany

P4.01
Characterization of stochastic nanostructures on ethylene tetrafluoroethylene films
Authors: C. Steiner, J. Fahlteich
Fraunhofer FEP, Germany

P4.03
Influence of thin-film properties on the reliability of ultra-thin glass
Authors: J. Westphalen1,2, M. Junghähnel2, S. Weller2, G. Lorenz3, F. Naumann3
1 TU Ilmenau, Department of Inorganic-Nonmetallic Materials, Ilmenau, Germany
2 Fraunhofer FEP, Germany
3 Fraunhofer IMWS, Center for Applied Microstructure Diagnostics (CAM), Germany

P4.04
Processing of thin-films on ultra-thin flexible glass
Authors: M. Junghähnel, M. Fahland, C. May, S. Mogck
Fraunhofer FEP, Germany

P4.05
OLED lighting using ultra-thin flexible glass (G-Leaf ™)
Authors: S. Mogck1, M. Stanel1, Y. Hasegawa2, K. Mitsugi2, Y. Uno2
1 Fraunhofer FEP, Dresden, Germany
2 Nippon Electric Glass Co., Ltd., Japan

Press contact:
Annett Arnold
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/DE2

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht The Micro Nanotech area at MD&M West has been successfully established
22.02.2017 | IVAM Fachverband für Mikrotechnik

nachricht Use your Voice – and Smart Homes will “LISTEN”
21.02.2017 | EML European Media Laboratory GmbH

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>