Light weight construction for aeronautics and transport: sustainably repairing and recycling CFRP

Defective airplane components made from carbon fiber reinforced plastics may soon be repaired or recycled easily and cost-effectively. mev-Verlag

Composites made from crosslinked polymers – so-called thermosets – are reinforced with carbon, glass or natural fibers. Their rich spectrum of properties have increased their importance in aerospace, the automotive industry, wind power generation, shipbuilding, railway construction, building construction, and civil engineering.

Yet, even the best material can become damaged or show wear and tear. Engineers must then decide whether the defective area should be painstakingly and expensively patched, or whether the entire component has to be replaced.

“Repairing and recycling polymer-based composites are inseparably linked to resource efficiency and sustainability”, explains Dr. Christian Dreyer, who leads the Research Division Polymeric Materials and Composites PYCO at the Fraunhofer IAP. “Finite resources increase the importance of sustainable management and the use of recyclable and repairable polymer materials”, says Dreyer.

The researchers have therefore developed a process for repairing and chemically recycling fiber-reinforced thermosets. These are especially used as matrix resins in composites for high-stress components.

The crosslinked polymers form a very rigid structure that gives the component its shape. But it is precisely this structure that creates a problem when it comes to repairing or recycling the component. Unlike thermoplastics, once thermosets are cured, it is very difficult to chemically decompose them.

Repairing and reclaiming – simple, cost-effective and energy-efficient

“We have developed a fast and gentle way for a chemical recycling which allows highly crosslinked plastics to be broken down into their basic elements”, Dreyer explains. This development enables a component to be completely recycled or to be repaired locally. The resin matrix is gently removed from the defective area without significantly impacting the mechanical properties of the reinforcement fiber. The exposed fibers are then refilled with repair resin and cured.

The new process is also setting the standard for recycling. Until now discarded components have been either incinerated or shredded to be used as fillers. The Fraunhofer researchers have the crucial advantage when it comes to chemical recycling: the often expensive reinforcement fibers are reclaimed alongside the decomposed polymer matrix. Due to the limited size of the components, the fibers are no longer continuous filaments. Nevertheless there are many applications that use fibers measuring up to several centimeters.

Professor Alexander Böker, who heads up the Fraunhofer IAP explains: “This recycling process is of particular interest to companies since the matrix material can also be recycled on an industrial scale. This allows sufficient quantities of new ‘recycling thermosets’ to be synthesized. The Fraunhofer Pilot Plant Centre for Polymer Synthesis and Processing PAZ – a joint initiative of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm and for Microstructure of Materials and Systems IMWS in Halle/Saale – enables us to manufacture these resins in industry-relevant quantities.

Visit us at JEC World!

JEC World 2016 | March 8 – 10, 2016, Paris (F) |
Joint stand run by Carbon Composites e.V., Halle 5a, Stand D52

Exhibition grounds: Paris Nord Villepinte Exhibition Centre |
Address : CD 40, ZAC Paris Nord 2, 93420 Villepinte, France

Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and procedures. In addition to the environmentally friendly, economical production and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers. Synthetic petroleum-based polymers as well as biopolymers and biobased polymers from renewable raw materials are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

Contact:
Dr. Sandra Mehlhase | Press & Public Relations
Geiselbergstraße 69 | 14476 Potsdam-Golm, Germany
Phone: +49 331 568-1151 | email: sandra.mehlhase@iap.fraunhofer.de

Media Contact

Dr. Sandra Mehlhase Fraunhofer-Institut für Angewandte Polymerforschung IAP

All latest news from the category: Trade Fair News

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors