Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light weight construction for aeronautics and transport: sustainably repairing and recycling CFRP

07.03.2016

High performance carbon fiber reinforced plastics (CFRP) have firmly established themselves in modern airplanes. Repairs, however, are very laborious and often even impossible. Most of the time, the entire component has to be replaced. The PYCO Research Division at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, Germany, has developed a simple, cost-effective and energy-efficient way to make sustainable repairs. Moreover, entire components can be completely recycled in a process in which the expensive carbon fibers are reclaimed. Researchers will present their developments at JEC World in Paris from March 8 to 10, 2016 in Hall 5a, stand D52.

Composites made from crosslinked polymers – so-called thermosets – are reinforced with carbon, glass or natural fibers. Their rich spectrum of properties have increased their importance in aerospace, the automotive industry, wind power generation, shipbuilding, railway construction, building construction, and civil engineering.


Defective airplane components made from carbon fiber reinforced plastics may soon be repaired or recycled easily and cost-effectively.

mev-Verlag

Yet, even the best material can become damaged or show wear and tear. Engineers must then decide whether the defective area should be painstakingly and expensively patched, or whether the entire component has to be replaced.

“Repairing and recycling polymer-based composites are inseparably linked to resource efficiency and sustainability”, explains Dr. Christian Dreyer, who leads the Research Division Polymeric Materials and Composites PYCO at the Fraunhofer IAP. “Finite resources increase the importance of sustainable management and the use of recyclable and repairable polymer materials”, says Dreyer.

The researchers have therefore developed a process for repairing and chemically recycling fiber-reinforced thermosets. These are especially used as matrix resins in composites for high-stress components.

The crosslinked polymers form a very rigid structure that gives the component its shape. But it is precisely this structure that creates a problem when it comes to repairing or recycling the component. Unlike thermoplastics, once thermosets are cured, it is very difficult to chemically decompose them.

Repairing and reclaiming – simple, cost-effective and energy-efficient

“We have developed a fast and gentle way for a chemical recycling which allows highly crosslinked plastics to be broken down into their basic elements”, Dreyer explains. This development enables a component to be completely recycled or to be repaired locally. The resin matrix is gently removed from the defective area without significantly impacting the mechanical properties of the reinforcement fiber. The exposed fibers are then refilled with repair resin and cured.

The new process is also setting the standard for recycling. Until now discarded components have been either incinerated or shredded to be used as fillers. The Fraunhofer researchers have the crucial advantage when it comes to chemical recycling: the often expensive reinforcement fibers are reclaimed alongside the decomposed polymer matrix. Due to the limited size of the components, the fibers are no longer continuous filaments. Nevertheless there are many applications that use fibers measuring up to several centimeters.

Professor Alexander Böker, who heads up the Fraunhofer IAP explains: “This recycling process is of particular interest to companies since the matrix material can also be recycled on an industrial scale. This allows sufficient quantities of new ‘recycling thermosets’ to be synthesized. The Fraunhofer Pilot Plant Centre for Polymer Synthesis and Processing PAZ – a joint initiative of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm and for Microstructure of Materials and Systems IMWS in Halle/Saale – enables us to manufacture these resins in industry-relevant quantities.

Visit us at JEC World!

JEC World 2016 | March 8 – 10, 2016, Paris (F) |
Joint stand run by Carbon Composites e.V., Halle 5a, Stand D52

Exhibition grounds: Paris Nord Villepinte Exhibition Centre |
Address : CD 40, ZAC Paris Nord 2, 93420 Villepinte, France


Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and procedures. In addition to the environmentally friendly, economical production and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers. Synthetic petroleum-based polymers as well as biopolymers and biobased polymers from renewable raw materials are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

Contact:
Dr. Sandra Mehlhase | Press & Public Relations
Geiselbergstraße 69 | 14476 Potsdam-Golm, Germany
Phone: +49 331 568-1151 | email: sandra.mehlhase@iap.fraunhofer.de

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

More articles from Trade Fair News:

nachricht IVAM Product Market „High-tech for Medical Devices“ at COMPAMED 2017
18.10.2017 | IVAM Fachverband für Mikrotechnik

nachricht Fiber Optic Collimation C-Lenses will be Exhibited by FISBA at OFC 2017
14.03.2017 | FISBA AG

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>