Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light weight construction for aeronautics and transport: sustainably repairing and recycling CFRP

07.03.2016

High performance carbon fiber reinforced plastics (CFRP) have firmly established themselves in modern airplanes. Repairs, however, are very laborious and often even impossible. Most of the time, the entire component has to be replaced. The PYCO Research Division at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, Germany, has developed a simple, cost-effective and energy-efficient way to make sustainable repairs. Moreover, entire components can be completely recycled in a process in which the expensive carbon fibers are reclaimed. Researchers will present their developments at JEC World in Paris from March 8 to 10, 2016 in Hall 5a, stand D52.

Composites made from crosslinked polymers – so-called thermosets – are reinforced with carbon, glass or natural fibers. Their rich spectrum of properties have increased their importance in aerospace, the automotive industry, wind power generation, shipbuilding, railway construction, building construction, and civil engineering.


Defective airplane components made from carbon fiber reinforced plastics may soon be repaired or recycled easily and cost-effectively.

mev-Verlag

Yet, even the best material can become damaged or show wear and tear. Engineers must then decide whether the defective area should be painstakingly and expensively patched, or whether the entire component has to be replaced.

“Repairing and recycling polymer-based composites are inseparably linked to resource efficiency and sustainability”, explains Dr. Christian Dreyer, who leads the Research Division Polymeric Materials and Composites PYCO at the Fraunhofer IAP. “Finite resources increase the importance of sustainable management and the use of recyclable and repairable polymer materials”, says Dreyer.

The researchers have therefore developed a process for repairing and chemically recycling fiber-reinforced thermosets. These are especially used as matrix resins in composites for high-stress components.

The crosslinked polymers form a very rigid structure that gives the component its shape. But it is precisely this structure that creates a problem when it comes to repairing or recycling the component. Unlike thermoplastics, once thermosets are cured, it is very difficult to chemically decompose them.

Repairing and reclaiming – simple, cost-effective and energy-efficient

“We have developed a fast and gentle way for a chemical recycling which allows highly crosslinked plastics to be broken down into their basic elements”, Dreyer explains. This development enables a component to be completely recycled or to be repaired locally. The resin matrix is gently removed from the defective area without significantly impacting the mechanical properties of the reinforcement fiber. The exposed fibers are then refilled with repair resin and cured.

The new process is also setting the standard for recycling. Until now discarded components have been either incinerated or shredded to be used as fillers. The Fraunhofer researchers have the crucial advantage when it comes to chemical recycling: the often expensive reinforcement fibers are reclaimed alongside the decomposed polymer matrix. Due to the limited size of the components, the fibers are no longer continuous filaments. Nevertheless there are many applications that use fibers measuring up to several centimeters.

Professor Alexander Böker, who heads up the Fraunhofer IAP explains: “This recycling process is of particular interest to companies since the matrix material can also be recycled on an industrial scale. This allows sufficient quantities of new ‘recycling thermosets’ to be synthesized. The Fraunhofer Pilot Plant Centre for Polymer Synthesis and Processing PAZ – a joint initiative of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm and for Microstructure of Materials and Systems IMWS in Halle/Saale – enables us to manufacture these resins in industry-relevant quantities.

Visit us at JEC World!

JEC World 2016 | March 8 – 10, 2016, Paris (F) |
Joint stand run by Carbon Composites e.V., Halle 5a, Stand D52

Exhibition grounds: Paris Nord Villepinte Exhibition Centre |
Address : CD 40, ZAC Paris Nord 2, 93420 Villepinte, France


Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and procedures. In addition to the environmentally friendly, economical production and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers. Synthetic petroleum-based polymers as well as biopolymers and biobased polymers from renewable raw materials are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

Contact:
Dr. Sandra Mehlhase | Press & Public Relations
Geiselbergstraße 69 | 14476 Potsdam-Golm, Germany
Phone: +49 331 568-1151 | email: sandra.mehlhase@iap.fraunhofer.de

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

More articles from Trade Fair News:

nachricht International companies showcase their innovations at Medical Manufacturing Asia in Singapore
21.06.2016 | IVAM Fachverband für Mikrotechnik

nachricht EELICON – Smart shading system
07.06.2016 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>