Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Economical, clean, environment-friendly – Laser wire buildup welding

06.05.2013
For the very first time the Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) Dresden will present its novel coaxial laser wire deposition head COAXwire for high precision metal deposition procedures at the tradeshow Laser World of Photonics 2013 in Munich (hall C2, booth 330). This novel approach is most suitable for the generation and repair of components as well as for the functionalization of surfaces.

In a form-giving laser buildup welding process the use of wire instead of powder imparts a number of decisive advantages. For example, independent from the part geometry the material utilization is always 100 %. It is a very clean process and there is only a minimal need for finishing steps.


Compact laser wire deposition head
© Fraunhofer IWS Dresden


Process of a volume buildup by direct laser wire deposition
© Fraunhofer IWS Dresden

Due to the fact that the specific surface of wire is much smaller than that of powder, there is only a small risk that wires will chemically react with the surrounding atmosphere. This property allows very advantageous processing options for reaction-sensitive materials such as titanium or aluminum. These materials can be laser wire buildup welded under normal atmospheric conditions, just with a local inert gas supply.

The novel deposition heads COAXwire are based on a unique optical system for solid-state lasers (rod, disc, fiber) up to powers of 4 kW. The system allows the user to deliver the wire exactly along the center of the laser beam axis and is completely directionally independent. This independence will even be maintained if the welding direction significantly deviates from a down hand position. Wire diameters range from 0.8 to 1.2 mm and indeed, this novel technology is even applicable to wires as thin as 0.3 mm.

In addition to the cold wire version, it is also possible to integrate a hotwire technology into the deposition head to increase the buildup rate. The laser process is efficiently supported by inductive energy, which can be simultaneously coupled into the wire and the component. Thus productivity can be decisively increased. This will mean record deposition rates of 10 kg/h in the field of thermal buildup technology!

The Fraunhofer IWS Dresden is highly recognized for its numerous laser technologies and systems, which have been implemented into industrial applications and are of high economical benefit to our customers. Our scientists and technicians with expertise in laser cutting, welding, cladding, deposition, structuring and surface treatment are looking forward to many interesting discussions at the laser tradeshow.

Dr.-Ing.SteffenNowotny | Fraunhofer-Institut
Further information:
http://www.iws.fraunhofer.de/en
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2013/press_release_2013-09.html

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>