Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Economical, clean, environment-friendly – Laser wire buildup welding

06.05.2013
For the very first time the Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) Dresden will present its novel coaxial laser wire deposition head COAXwire for high precision metal deposition procedures at the tradeshow Laser World of Photonics 2013 in Munich (hall C2, booth 330). This novel approach is most suitable for the generation and repair of components as well as for the functionalization of surfaces.

In a form-giving laser buildup welding process the use of wire instead of powder imparts a number of decisive advantages. For example, independent from the part geometry the material utilization is always 100 %. It is a very clean process and there is only a minimal need for finishing steps.


Compact laser wire deposition head
© Fraunhofer IWS Dresden


Process of a volume buildup by direct laser wire deposition
© Fraunhofer IWS Dresden

Due to the fact that the specific surface of wire is much smaller than that of powder, there is only a small risk that wires will chemically react with the surrounding atmosphere. This property allows very advantageous processing options for reaction-sensitive materials such as titanium or aluminum. These materials can be laser wire buildup welded under normal atmospheric conditions, just with a local inert gas supply.

The novel deposition heads COAXwire are based on a unique optical system for solid-state lasers (rod, disc, fiber) up to powers of 4 kW. The system allows the user to deliver the wire exactly along the center of the laser beam axis and is completely directionally independent. This independence will even be maintained if the welding direction significantly deviates from a down hand position. Wire diameters range from 0.8 to 1.2 mm and indeed, this novel technology is even applicable to wires as thin as 0.3 mm.

In addition to the cold wire version, it is also possible to integrate a hotwire technology into the deposition head to increase the buildup rate. The laser process is efficiently supported by inductive energy, which can be simultaneously coupled into the wire and the component. Thus productivity can be decisively increased. This will mean record deposition rates of 10 kg/h in the field of thermal buildup technology!

The Fraunhofer IWS Dresden is highly recognized for its numerous laser technologies and systems, which have been implemented into industrial applications and are of high economical benefit to our customers. Our scientists and technicians with expertise in laser cutting, welding, cladding, deposition, structuring and surface treatment are looking forward to many interesting discussions at the laser tradeshow.

Dr.-Ing.SteffenNowotny | Fraunhofer-Institut
Further information:
http://www.iws.fraunhofer.de/en
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2013/press_release_2013-09.html

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>