Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Economical, clean, environment-friendly – Laser wire buildup welding

For the very first time the Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) Dresden will present its novel coaxial laser wire deposition head COAXwire for high precision metal deposition procedures at the tradeshow Laser World of Photonics 2013 in Munich (hall C2, booth 330). This novel approach is most suitable for the generation and repair of components as well as for the functionalization of surfaces.

In a form-giving laser buildup welding process the use of wire instead of powder imparts a number of decisive advantages. For example, independent from the part geometry the material utilization is always 100 %. It is a very clean process and there is only a minimal need for finishing steps.

Compact laser wire deposition head
© Fraunhofer IWS Dresden

Process of a volume buildup by direct laser wire deposition
© Fraunhofer IWS Dresden

Due to the fact that the specific surface of wire is much smaller than that of powder, there is only a small risk that wires will chemically react with the surrounding atmosphere. This property allows very advantageous processing options for reaction-sensitive materials such as titanium or aluminum. These materials can be laser wire buildup welded under normal atmospheric conditions, just with a local inert gas supply.

The novel deposition heads COAXwire are based on a unique optical system for solid-state lasers (rod, disc, fiber) up to powers of 4 kW. The system allows the user to deliver the wire exactly along the center of the laser beam axis and is completely directionally independent. This independence will even be maintained if the welding direction significantly deviates from a down hand position. Wire diameters range from 0.8 to 1.2 mm and indeed, this novel technology is even applicable to wires as thin as 0.3 mm.

In addition to the cold wire version, it is also possible to integrate a hotwire technology into the deposition head to increase the buildup rate. The laser process is efficiently supported by inductive energy, which can be simultaneously coupled into the wire and the component. Thus productivity can be decisively increased. This will mean record deposition rates of 10 kg/h in the field of thermal buildup technology!

The Fraunhofer IWS Dresden is highly recognized for its numerous laser technologies and systems, which have been implemented into industrial applications and are of high economical benefit to our customers. Our scientists and technicians with expertise in laser cutting, welding, cladding, deposition, structuring and surface treatment are looking forward to many interesting discussions at the laser tradeshow.

Dr.-Ing.SteffenNowotny | Fraunhofer-Institut
Further information:

More articles from Trade Fair News:

nachricht Development and Fast Analysis of 3D Printed HF Components
19.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Photovoltaics: easy implementation thanks to modern printing techniques
14.03.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>