Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive and collaborative: CoWeldRob – the welding robot assistant

18.03.2014

It can localize components, automatically generate programs, learn from the worker and collaborate with him.

For the European research initiative SMErobotics, scientists at Fraunhofer IPA are developing a cognitive and collaborative welding robot assistant called CoWeldRob.


CoWeldRob – the cognitive and collaborative welding robot assistant

Image credit: Fraunhofer IPA

The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses. A welding robot cell for welding typical components will be demonstrated at Automatica 2014.

Solid expertise combined with many years of experience: that’s what is required for the high-quality production of welded components. The welding torch needs to be accurately controlled with expert skill and the correct welding sequence must be observed.

On the other hand, the working conditions for humans are exacerbated by such factors as air pollution, heat and non-ergonomic posture. Also, as there is a growing shortage of qualified skilled workers, one possible solution might be to transfer the existing technological know-how to robot systems.

So far, however, automation has been made impossible by the high programming effort required for robot systems, especially in small-scale production and where there is high product diversity, such as in small and medium-sized manufacturing enterprises. What is needed is a robot system capable of independently generating suggestions for task or program execution, continuously learning from the human worker and applying the acquired knowledge to similar components.

CoWeldRob

The European research initiative SMErobotics is developing new modular and interactive operating concepts and control systems for the efficient use of robots in a variety of applications. With this in mind, Fraunhofer IPA is designing and developing a cognitive and collaborative welding robot assistant known as CoWeldRob. The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses.

“CoWeldRob is designed to make the automation of welding operations profitable also in the case of small lot sizes and production quantities. It does this by being easy and intuitive to program by the welder and by continuously learning from him,” explains Thomas Dietz, project manager and group leader in the Robot and Assistance Systems department.

The welding robot assistant can automatically transfer programs to similar components without the need for major new programming effort. “This allows above all small and medium-sized enterprises to respond more flexibly to changes in customer orders,” says Dietz.

At Automatica 2014, Fraunhofer IPA will demonstrate a welding robot cell for cost-effective path welding based on the example of steel components from the agricultural machinery sector, including for extremely small lot sizes. Visitors will have an opportunity to specify their own desired welding process and have it executed by the robot system. 

System components

Automatic, model-based path and program generation: Robot programs are automatically generated on the basis of different models of the components, welding process and robot system. Intuitive operation, e.g. using a touchscreen, pointing or showing, allows changes made by the welder to be quickly incorporated and implemented. Such user inputs as well as sensor-detected data are brought into a logical relationship. This information can then be reused for various downstream processes, such as grinding or quality control. This makes it possible for programming and set-up times to be significantly reduced.

Component localization: By comparing CAD and sensor data, the welding robot assistant is able to automatically determine the precise position of the component and therefore of the welding paths. This makes it possible to adapt the robot path and to dispense with rigid fixtures for exact positioning of the components.

Robust handling of uncertainties: The developed approaches are designed to cope with and suitably react to tolerances both of the component, such as air gap and weld preparation, and of the process, such as a permitted torch orientation error. This makes CoWeldRob more robust than a conventional automated welding system. 

Learning robot: A welder knows from many years of experience which settings are required to produce a high-quality component. The process expert can transfer this experience to CoWeldRob by, for example, evaluating a suggested weld seam sequence and by thus instructing the robot system with regard to the desired mode of behaviour. Consequently, using methods from cognitive research, the robot can learn from the welder’s process know-how and continuously improve its performance over time.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 131

Contact:
Dipl.-Ing. Thomas Dietz, phone +49 711 970-1152, thomas.dietz@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA Produktionstechnik SMErobotics cognitive programming sequence

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>