Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive and collaborative: CoWeldRob – the welding robot assistant

18.03.2014

It can localize components, automatically generate programs, learn from the worker and collaborate with him.

For the European research initiative SMErobotics, scientists at Fraunhofer IPA are developing a cognitive and collaborative welding robot assistant called CoWeldRob.


CoWeldRob – the cognitive and collaborative welding robot assistant

Image credit: Fraunhofer IPA

The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses. A welding robot cell for welding typical components will be demonstrated at Automatica 2014.

Solid expertise combined with many years of experience: that’s what is required for the high-quality production of welded components. The welding torch needs to be accurately controlled with expert skill and the correct welding sequence must be observed.

On the other hand, the working conditions for humans are exacerbated by such factors as air pollution, heat and non-ergonomic posture. Also, as there is a growing shortage of qualified skilled workers, one possible solution might be to transfer the existing technological know-how to robot systems.

So far, however, automation has been made impossible by the high programming effort required for robot systems, especially in small-scale production and where there is high product diversity, such as in small and medium-sized manufacturing enterprises. What is needed is a robot system capable of independently generating suggestions for task or program execution, continuously learning from the human worker and applying the acquired knowledge to similar components.

CoWeldRob

The European research initiative SMErobotics is developing new modular and interactive operating concepts and control systems for the efficient use of robots in a variety of applications. With this in mind, Fraunhofer IPA is designing and developing a cognitive and collaborative welding robot assistant known as CoWeldRob. The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses.

“CoWeldRob is designed to make the automation of welding operations profitable also in the case of small lot sizes and production quantities. It does this by being easy and intuitive to program by the welder and by continuously learning from him,” explains Thomas Dietz, project manager and group leader in the Robot and Assistance Systems department.

The welding robot assistant can automatically transfer programs to similar components without the need for major new programming effort. “This allows above all small and medium-sized enterprises to respond more flexibly to changes in customer orders,” says Dietz.

At Automatica 2014, Fraunhofer IPA will demonstrate a welding robot cell for cost-effective path welding based on the example of steel components from the agricultural machinery sector, including for extremely small lot sizes. Visitors will have an opportunity to specify their own desired welding process and have it executed by the robot system. 

System components

Automatic, model-based path and program generation: Robot programs are automatically generated on the basis of different models of the components, welding process and robot system. Intuitive operation, e.g. using a touchscreen, pointing or showing, allows changes made by the welder to be quickly incorporated and implemented. Such user inputs as well as sensor-detected data are brought into a logical relationship. This information can then be reused for various downstream processes, such as grinding or quality control. This makes it possible for programming and set-up times to be significantly reduced.

Component localization: By comparing CAD and sensor data, the welding robot assistant is able to automatically determine the precise position of the component and therefore of the welding paths. This makes it possible to adapt the robot path and to dispense with rigid fixtures for exact positioning of the components.

Robust handling of uncertainties: The developed approaches are designed to cope with and suitably react to tolerances both of the component, such as air gap and weld preparation, and of the process, such as a permitted torch orientation error. This makes CoWeldRob more robust than a conventional automated welding system. 

Learning robot: A welder knows from many years of experience which settings are required to produce a high-quality component. The process expert can transfer this experience to CoWeldRob by, for example, evaluating a suggested weld seam sequence and by thus instructing the robot system with regard to the desired mode of behaviour. Consequently, using methods from cognitive research, the robot can learn from the welder’s process know-how and continuously improve its performance over time.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 131

Contact:
Dipl.-Ing. Thomas Dietz, phone +49 711 970-1152, thomas.dietz@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA Produktionstechnik SMErobotics cognitive programming sequence

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>