Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive and collaborative: CoWeldRob – the welding robot assistant

18.03.2014

It can localize components, automatically generate programs, learn from the worker and collaborate with him.

For the European research initiative SMErobotics, scientists at Fraunhofer IPA are developing a cognitive and collaborative welding robot assistant called CoWeldRob.


CoWeldRob – the cognitive and collaborative welding robot assistant

Image credit: Fraunhofer IPA

The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses. A welding robot cell for welding typical components will be demonstrated at Automatica 2014.

Solid expertise combined with many years of experience: that’s what is required for the high-quality production of welded components. The welding torch needs to be accurately controlled with expert skill and the correct welding sequence must be observed.

On the other hand, the working conditions for humans are exacerbated by such factors as air pollution, heat and non-ergonomic posture. Also, as there is a growing shortage of qualified skilled workers, one possible solution might be to transfer the existing technological know-how to robot systems.

So far, however, automation has been made impossible by the high programming effort required for robot systems, especially in small-scale production and where there is high product diversity, such as in small and medium-sized manufacturing enterprises. What is needed is a robot system capable of independently generating suggestions for task or program execution, continuously learning from the human worker and applying the acquired knowledge to similar components.

CoWeldRob

The European research initiative SMErobotics is developing new modular and interactive operating concepts and control systems for the efficient use of robots in a variety of applications. With this in mind, Fraunhofer IPA is designing and developing a cognitive and collaborative welding robot assistant known as CoWeldRob. The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses.

“CoWeldRob is designed to make the automation of welding operations profitable also in the case of small lot sizes and production quantities. It does this by being easy and intuitive to program by the welder and by continuously learning from him,” explains Thomas Dietz, project manager and group leader in the Robot and Assistance Systems department.

The welding robot assistant can automatically transfer programs to similar components without the need for major new programming effort. “This allows above all small and medium-sized enterprises to respond more flexibly to changes in customer orders,” says Dietz.

At Automatica 2014, Fraunhofer IPA will demonstrate a welding robot cell for cost-effective path welding based on the example of steel components from the agricultural machinery sector, including for extremely small lot sizes. Visitors will have an opportunity to specify their own desired welding process and have it executed by the robot system. 

System components

Automatic, model-based path and program generation: Robot programs are automatically generated on the basis of different models of the components, welding process and robot system. Intuitive operation, e.g. using a touchscreen, pointing or showing, allows changes made by the welder to be quickly incorporated and implemented. Such user inputs as well as sensor-detected data are brought into a logical relationship. This information can then be reused for various downstream processes, such as grinding or quality control. This makes it possible for programming and set-up times to be significantly reduced.

Component localization: By comparing CAD and sensor data, the welding robot assistant is able to automatically determine the precise position of the component and therefore of the welding paths. This makes it possible to adapt the robot path and to dispense with rigid fixtures for exact positioning of the components.

Robust handling of uncertainties: The developed approaches are designed to cope with and suitably react to tolerances both of the component, such as air gap and weld preparation, and of the process, such as a permitted torch orientation error. This makes CoWeldRob more robust than a conventional automated welding system. 

Learning robot: A welder knows from many years of experience which settings are required to produce a high-quality component. The process expert can transfer this experience to CoWeldRob by, for example, evaluating a suggested weld seam sequence and by thus instructing the robot system with regard to the desired mode of behaviour. Consequently, using methods from cognitive research, the robot can learn from the welder’s process know-how and continuously improve its performance over time.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 131

Contact:
Dipl.-Ing. Thomas Dietz, phone +49 711 970-1152, thomas.dietz@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA Produktionstechnik SMErobotics cognitive programming sequence

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>