Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive and collaborative: CoWeldRob – the welding robot assistant

18.03.2014

It can localize components, automatically generate programs, learn from the worker and collaborate with him.

For the European research initiative SMErobotics, scientists at Fraunhofer IPA are developing a cognitive and collaborative welding robot assistant called CoWeldRob.


CoWeldRob – the cognitive and collaborative welding robot assistant

Image credit: Fraunhofer IPA

The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses. A welding robot cell for welding typical components will be demonstrated at Automatica 2014.

Solid expertise combined with many years of experience: that’s what is required for the high-quality production of welded components. The welding torch needs to be accurately controlled with expert skill and the correct welding sequence must be observed.

On the other hand, the working conditions for humans are exacerbated by such factors as air pollution, heat and non-ergonomic posture. Also, as there is a growing shortage of qualified skilled workers, one possible solution might be to transfer the existing technological know-how to robot systems.

So far, however, automation has been made impossible by the high programming effort required for robot systems, especially in small-scale production and where there is high product diversity, such as in small and medium-sized manufacturing enterprises. What is needed is a robot system capable of independently generating suggestions for task or program execution, continuously learning from the human worker and applying the acquired knowledge to similar components.

CoWeldRob

The European research initiative SMErobotics is developing new modular and interactive operating concepts and control systems for the efficient use of robots in a variety of applications. With this in mind, Fraunhofer IPA is designing and developing a cognitive and collaborative welding robot assistant known as CoWeldRob. The goal is to significantly reduce the programming effort for automated production in small and medium-sized welding businesses.

“CoWeldRob is designed to make the automation of welding operations profitable also in the case of small lot sizes and production quantities. It does this by being easy and intuitive to program by the welder and by continuously learning from him,” explains Thomas Dietz, project manager and group leader in the Robot and Assistance Systems department.

The welding robot assistant can automatically transfer programs to similar components without the need for major new programming effort. “This allows above all small and medium-sized enterprises to respond more flexibly to changes in customer orders,” says Dietz.

At Automatica 2014, Fraunhofer IPA will demonstrate a welding robot cell for cost-effective path welding based on the example of steel components from the agricultural machinery sector, including for extremely small lot sizes. Visitors will have an opportunity to specify their own desired welding process and have it executed by the robot system. 

System components

Automatic, model-based path and program generation: Robot programs are automatically generated on the basis of different models of the components, welding process and robot system. Intuitive operation, e.g. using a touchscreen, pointing or showing, allows changes made by the welder to be quickly incorporated and implemented. Such user inputs as well as sensor-detected data are brought into a logical relationship. This information can then be reused for various downstream processes, such as grinding or quality control. This makes it possible for programming and set-up times to be significantly reduced.

Component localization: By comparing CAD and sensor data, the welding robot assistant is able to automatically determine the precise position of the component and therefore of the welding paths. This makes it possible to adapt the robot path and to dispense with rigid fixtures for exact positioning of the components.

Robust handling of uncertainties: The developed approaches are designed to cope with and suitably react to tolerances both of the component, such as air gap and weld preparation, and of the process, such as a permitted torch orientation error. This makes CoWeldRob more robust than a conventional automated welding system. 

Learning robot: A welder knows from many years of experience which settings are required to produce a high-quality component. The process expert can transfer this experience to CoWeldRob by, for example, evaluating a suggested weld seam sequence and by thus instructing the robot system with regard to the desired mode of behaviour. Consequently, using methods from cognitive research, the robot can learn from the welder’s process know-how and continuously improve its performance over time.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 131

Contact:
Dipl.-Ing. Thomas Dietz, phone +49 711 970-1152, thomas.dietz@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA Produktionstechnik SMErobotics cognitive programming sequence

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>