Stabilization of Miniaturized Intracavity Frequency-Doubled Lasers

Kurzbeschreibung zum Projekt, EN The so-called 'green problem' became relevant with the need to miniaturize cw intracavity frequency doubled solid state lasers. One can see the green problem as high frequency (MHz-range), high contrast ((ΔI / I> 0,6) intensity modulation.

There are mainly two standard solutions: a) using a long resonator – which means, that you must not miniaturize the laser – results in using as many longitudinal modes as mode hopping does not cause significant intensity noise. b) forcing a single mode operation, which is accompanied by significant loss of intensity. The Georg-August-Universität of Göttingen proposes a method based on a multiple time delayed feedback control. A signal generated from intensities of the fundamental modes is fed back to the pump power. The result is a highly stable output (peak-to-peak better 1%) with nearly no loss of intensity. Such stable cw-lasers with high beam quality are used in measurement and medicin, but in RGB projection systems and holografic displays. Now these systems can be miniaturized.

Further Information: PDF

MBM ScienceBridge GmbH
Phone: (0551) 30724-151

Contact
Dr. Jens-Peter Horst

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors