Single or Entangled Photon Source

</a><strong>Background</strong><br>

For high security quantum cryptography electrically triggered single or entan-gled photon sources are needed. In addition the mass market requires effi-cient, electrically driven, high-speed devices. Common growth and pro-cessing techniques are used to fabricate single photon sources which either generate polarization entangled photon pairs or polarization controlled single photons. This offers the opportunity for quantum cryptography with single photons or entangled photon pairs.</p> <p><!–break–></p> <p class=”MsoNormal” style=”margin-bottom: 0.0001pt;”><strong>Technology</strong><br> We offer a method for producing a single or entangled photon source, which can be carried out in a simple and reproducible manner. This novel method enables the production of a compact single photon source which can emit defined linearly polarized single photons, transposed photon pairs or cas-cades of correlated photons. The fine structure splitting of the exciton energy level of a quantum dot (QD) is dependent on material strains. It is the invention to selectively establish the degree of strain within the quantum dots and within the surrounding material structure by the choice of the QD size.<br> <br> <strong>Benefits</strong><br> <ul> <li>Choice of electrically triggered entangled or single photon source</li> <li>Thermo-electrical cooling</li> <li>Mass production possible</li> </ul><br> <strong>IP Rights</strong><br> German Patent DE 102005057800 B4<br> European/ US/ Japanese Patent Application<strong><br> <br> Patent Owner</strong><br> Technische Universität Berlin, Germany</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors