Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniaturized Pinch Valve

12.12.2012
<strong>Background</strong><br>

Pinch valves are operated by squeezing a flexible tube in a part of the valve by either moving a separate squeezing device against the tube or by impinging the squeezing part with an actuator. However, with current state of the art valves it is necessary to manually insert the tube between the squeezing device and the counter bearing which is in most cases rather complicated. Besides this, most of the pinch valves are as well pretty large and cannot be used in miniaturized or highly integrated systems. Thus the secure dosing of liquids that contain cells or other solids is with the currently available valves only possible when using exchangeable pinch valves.<br><br> <strong>Technology</strong><br> HScientist at the Technische Universität Berlin have now developed a pinch valve that overcomes the current disadvantages of the state of the art as it can be integrated into existing dosing systems as inexpensive single use valve.<br><br> It allows dosing very little amounts of liquid in a very fast, precise and highly dynamic way. As the valve is modularly constructed it allows an inexpensive mass production via injection molding, is easily adaptable to various applications and can be automatized mounted. Moreover it is uncomplicated to incorporate the valve into existing dosing systems without great effort. <br><br> For further information please see also the following link: http://www.process.vogel.de/index.cfm?pid=7085&pk=336319&print= (article in German)

<br><br> <b>Benefits:</b><br> <ul> <li>Injection/ejection also possible under counter pressure</li> <li>Usage of different tube diameters in one valve -> realization as mixing valve possible</li> <li>Valves can directly be flange-mounted or molded </li> <li>Allows fast switching cycles by keeping a very high precision</li> <li>Especially for dosing cell- or solid-containing liquids as there are no cleaning or contamination problems </li> </ul><br> <strong>IP Rights</strong><br> EP and US application with priority on June 2010 <br> <br> <strong>Origin</strong><br> Technische Universität Berlin

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=3002&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Device and process for the agglomeration of colloids
29.07.2015 | TechnologieAllianz e.V.

nachricht Method for rapid optimization of FEBID/FIBID processes
29.07.2015 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

Telescopes team up to find distant Uranus-sized planet through microlensing

31.07.2015 | Physics and Astronomy

Quantum Matter Stuck in Unrest

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>