Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniaturized Pinch Valve

12.12.2012
<strong>Background</strong><br>

Pinch valves are operated by squeezing a flexible tube in a part of the valve by either moving a separate squeezing device against the tube or by impinging the squeezing part with an actuator. However, with current state of the art valves it is necessary to manually insert the tube between the squeezing device and the counter bearing which is in most cases rather complicated. Besides this, most of the pinch valves are as well pretty large and cannot be used in miniaturized or highly integrated systems. Thus the secure dosing of liquids that contain cells or other solids is with the currently available valves only possible when using exchangeable pinch valves.<br><br> <strong>Technology</strong><br> HScientist at the Technische Universität Berlin have now developed a pinch valve that overcomes the current disadvantages of the state of the art as it can be integrated into existing dosing systems as inexpensive single use valve.<br><br> It allows dosing very little amounts of liquid in a very fast, precise and highly dynamic way. As the valve is modularly constructed it allows an inexpensive mass production via injection molding, is easily adaptable to various applications and can be automatized mounted. Moreover it is uncomplicated to incorporate the valve into existing dosing systems without great effort. <br><br>

For further information please see also the following link: http://www.process.vogel.de/index.cfm?pid=7085&pk=336319&print= (article in German) <br><br> <b>Benefits:</b><br> <ul> <li>Injection/ejection also possible under counter pressure</li> <li>Usage of different tube diameters in one valve -> realization as mixing valve possible</li> <li>Valves can directly be flange-mounted or molded </li> <li>Allows fast switching cycles by keeping a very high precision</li> <li>Especially for dosing cell- or solid-containing liquids as there are no cleaning or contamination problems </li> </ul><br> <strong>IP Rights</strong><br> EP and US application with priority on June 2010 <br> <br> <strong>Origin</strong><br> Technische Universität Berlin

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=3002&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Synthesis of novel Myrtucommulone and Analogues
25.11.2013 | TechnologieAllianz e.V.

nachricht Transmission signal separation in radar systems for OFDM and multicarrier radar
22.11.2013 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

 
Latest News

Earliest modern human sequenced

22.10.2014 | Life Sciences

Continuous slab caster from Siemens receives FAC from Maanshan

22.10.2014 | Press release

'Shrinking goats' another indicator that climate change affects animal size

22.10.2014 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>