Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCL study establishes common biological ground for maternal and romantic love in humans

13.02.2004


A new study of young mothers by researchers at University College London (UCL) has shown that romantic and maternal love activate many of the same specific regions of the brain, and lead to a suppression of neural activity associated with critical social assessment of other people and negative emotions. The findings suggest that once one is closely familiar with a person, the need to assess the character and personality of that person is reduced, and bring us closer to explaining why, in neurological terms, ‘love makes blind.’

In the experiment, published in February’s NeuroImage online preview edition, the brains of 20 young mothers were scanned while they viewed pictures of their own children, children they were acquainted with, and adult friends, to control for feelings of familiarity and friendship (the brain regions involved in romantic love having been identified by the authors in an earlier study).

The similarity of the activity recorded in this study compared to those obtained in the earlier study was striking; with activity in several regions of the brain overlapping precisely in the two studies. In summary, the findings showed that both types of love activate specific regions in the reward system, while reducing activity in the systems necessary for making negative judgements.



The new results demonstrated also that the mechanisms of love are similar in animals and humans, and that the brain regions activated are the same ones as respond to the brain-produced drugs oxytocin and vasopressin. These neuro-hormones have been shown in animals to be both sufficient and necessary to induce both mother-infant bonding and male-female bonding. The new research therefore provides a link to the previous work on animals, showing that the same ’love-potion,’ produced by the brain, known to work in animals is also at work in humans.

“Both romantic and maternal love are highly rewarding experiences that are linked to the perpetuation of the species, and consequently have a closely linked biological function of crucial evolutionary importance,” said Andreas Bartels, of UCL’s Wellcome Department of Imaging Neuroscience. “Yet almost nothing is known about their neural correlates in the human.

“Our research enables us to conclude that human attachment employs a push-pull mechanism that overcomes social distance by deactivating networks used for critical social assessment and negative emotions, while it bonds individuals through the involvement of the reward circuitry (regions in the brain that induce euphoric feelings), explaining the power of love to motivate and exhilerate.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>