Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abilities required for success in school don’t differ greatly from those required in the real world

12.01.2004


General cognitive ability is related to success in multiple domains

Intelligence in the workplace is not that different from intelligence at school, according to the results of a meta-analysis of over one hundred studies involving more than 20,000 people. The findings contradict the popular notion that abilities required for success in the real world differ greatly from what is needed to achieve success in the classroom. The results are published in the January issue of the American Psychological Association’s (APA) Journal of Personality and Social Psychology.

General cognitive ability, or g, has remained controversial since the concept was introduced nearly a century ago. Research has shown that g predicts a broad spectrum of behaviors and performances, including academic achievement, job performance, creativity and health-related behaviors. Despite this, many people, including some social scientists, continue to believe that the abilities required for job success and abilities required for academic success are different.



In their meta-analysis of 127 studies involving 20,352 participants, psychologists Nathan R. Kuncel, Ph.D., and Sarah A. Hezlett, Ph.D., of the University of Illinois at Urbana-Champaign and Deniz S. Ones, Ph.D., of the University of Minnesota, Twin Cities Campus, set out to directly test whether the abilities related to performance in academic settings overlap with those predicting performance in work settings. To do this, they focused on studies that involved the Miller Analogies Test, or MAT. The MAT has been used for admissions decisions into graduate schools as well as in hiring and promotion decisions in the workplace. In use since 1926, the MAT is composed of analogies that require knowledge in many different areas, including sciences, literature, the arts, history and vocabulary.

The researchers found that the MAT was valid for predicting performance in both academic and work environments, providing direct evidence that g is related to success in multiple domains. The MAT was found to be a valid predictor of several aspects of graduate student performance as well as measures of job performance, potential and creativity. The validity was at least as high for work criteria as for school criteria. The researchers found that the MAT was a valid predictor of seven of the eight measures of graduate student performance, five of the six school-to-work transition performance criteria, and four of the work performance criteria.

"Although the academic setting places a greater emphasis on the acquisition of knowledge, performance in both academic and work settings is predicted by g," according to the researchers. "Both situations involve learning and contain complex or practical tasks and performance in both situations is partially determined by previously acquired levels of knowledge and skill. General cognitive ability is related to all three of these, which is why it should come as no surprise that the same cognitive ability test is a valid predictor of performance in both settings."

So why do so many people believe that the abilities required for success are so different for academic and work environments? "Perhaps the fact that tests and measures are often developed for particular settings, either educational or occupational, has perpetuated this myth," say the authors. "Our prediction was – and the results confirm – that there is a general factor of cognitive ability which is a broad predictor of numerous life outcomes."


Article: "Academic Performance, Career Potential, Creativity, and Job Performance: Can One construct Predict Them All?," Nathan R. Kuncel and Sarah A. Hezlett, University of Illinois at Urbana-Champaign and Deniz S. Ones, University of Minnesota, Twin Cities Campus; Journal of Personality and Social Psychology, Vol. 86, No. 1.

Full text of the article is available from the APA Public Affairs Office or at http://www.apa.org/releases/success_article.pdf.

Lead author Nathan Kuncel, Ph.D., can be reached by e-mail at nkuncel@uiuc.edu.

The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting health, education and human welfare.

David Partenheimer | APA
Further information:
http://www.apa.org/releases/success.html
http://www.apa.org/releases/success_article.pdf

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>