Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abilities required for success in school don’t differ greatly from those required in the real world

12.01.2004


General cognitive ability is related to success in multiple domains

Intelligence in the workplace is not that different from intelligence at school, according to the results of a meta-analysis of over one hundred studies involving more than 20,000 people. The findings contradict the popular notion that abilities required for success in the real world differ greatly from what is needed to achieve success in the classroom. The results are published in the January issue of the American Psychological Association’s (APA) Journal of Personality and Social Psychology.

General cognitive ability, or g, has remained controversial since the concept was introduced nearly a century ago. Research has shown that g predicts a broad spectrum of behaviors and performances, including academic achievement, job performance, creativity and health-related behaviors. Despite this, many people, including some social scientists, continue to believe that the abilities required for job success and abilities required for academic success are different.



In their meta-analysis of 127 studies involving 20,352 participants, psychologists Nathan R. Kuncel, Ph.D., and Sarah A. Hezlett, Ph.D., of the University of Illinois at Urbana-Champaign and Deniz S. Ones, Ph.D., of the University of Minnesota, Twin Cities Campus, set out to directly test whether the abilities related to performance in academic settings overlap with those predicting performance in work settings. To do this, they focused on studies that involved the Miller Analogies Test, or MAT. The MAT has been used for admissions decisions into graduate schools as well as in hiring and promotion decisions in the workplace. In use since 1926, the MAT is composed of analogies that require knowledge in many different areas, including sciences, literature, the arts, history and vocabulary.

The researchers found that the MAT was valid for predicting performance in both academic and work environments, providing direct evidence that g is related to success in multiple domains. The MAT was found to be a valid predictor of several aspects of graduate student performance as well as measures of job performance, potential and creativity. The validity was at least as high for work criteria as for school criteria. The researchers found that the MAT was a valid predictor of seven of the eight measures of graduate student performance, five of the six school-to-work transition performance criteria, and four of the work performance criteria.

"Although the academic setting places a greater emphasis on the acquisition of knowledge, performance in both academic and work settings is predicted by g," according to the researchers. "Both situations involve learning and contain complex or practical tasks and performance in both situations is partially determined by previously acquired levels of knowledge and skill. General cognitive ability is related to all three of these, which is why it should come as no surprise that the same cognitive ability test is a valid predictor of performance in both settings."

So why do so many people believe that the abilities required for success are so different for academic and work environments? "Perhaps the fact that tests and measures are often developed for particular settings, either educational or occupational, has perpetuated this myth," say the authors. "Our prediction was – and the results confirm – that there is a general factor of cognitive ability which is a broad predictor of numerous life outcomes."


Article: "Academic Performance, Career Potential, Creativity, and Job Performance: Can One construct Predict Them All?," Nathan R. Kuncel and Sarah A. Hezlett, University of Illinois at Urbana-Champaign and Deniz S. Ones, University of Minnesota, Twin Cities Campus; Journal of Personality and Social Psychology, Vol. 86, No. 1.

Full text of the article is available from the APA Public Affairs Office or at http://www.apa.org/releases/success_article.pdf.

Lead author Nathan Kuncel, Ph.D., can be reached by e-mail at nkuncel@uiuc.edu.

The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting health, education and human welfare.

David Partenheimer | APA
Further information:
http://www.apa.org/releases/success.html
http://www.apa.org/releases/success_article.pdf

More articles from Social Sciences:

nachricht Sibling differences: Later-borns choose less prestigious programs at university
14.11.2017 | Max-Planck-Institut für demografische Forschung

nachricht Visual intelligence is not the same as IQ
09.11.2017 | Vanderbilt University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>