Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abilities required for success in school don’t differ greatly from those required in the real world

12.01.2004


General cognitive ability is related to success in multiple domains

Intelligence in the workplace is not that different from intelligence at school, according to the results of a meta-analysis of over one hundred studies involving more than 20,000 people. The findings contradict the popular notion that abilities required for success in the real world differ greatly from what is needed to achieve success in the classroom. The results are published in the January issue of the American Psychological Association’s (APA) Journal of Personality and Social Psychology.

General cognitive ability, or g, has remained controversial since the concept was introduced nearly a century ago. Research has shown that g predicts a broad spectrum of behaviors and performances, including academic achievement, job performance, creativity and health-related behaviors. Despite this, many people, including some social scientists, continue to believe that the abilities required for job success and abilities required for academic success are different.



In their meta-analysis of 127 studies involving 20,352 participants, psychologists Nathan R. Kuncel, Ph.D., and Sarah A. Hezlett, Ph.D., of the University of Illinois at Urbana-Champaign and Deniz S. Ones, Ph.D., of the University of Minnesota, Twin Cities Campus, set out to directly test whether the abilities related to performance in academic settings overlap with those predicting performance in work settings. To do this, they focused on studies that involved the Miller Analogies Test, or MAT. The MAT has been used for admissions decisions into graduate schools as well as in hiring and promotion decisions in the workplace. In use since 1926, the MAT is composed of analogies that require knowledge in many different areas, including sciences, literature, the arts, history and vocabulary.

The researchers found that the MAT was valid for predicting performance in both academic and work environments, providing direct evidence that g is related to success in multiple domains. The MAT was found to be a valid predictor of several aspects of graduate student performance as well as measures of job performance, potential and creativity. The validity was at least as high for work criteria as for school criteria. The researchers found that the MAT was a valid predictor of seven of the eight measures of graduate student performance, five of the six school-to-work transition performance criteria, and four of the work performance criteria.

"Although the academic setting places a greater emphasis on the acquisition of knowledge, performance in both academic and work settings is predicted by g," according to the researchers. "Both situations involve learning and contain complex or practical tasks and performance in both situations is partially determined by previously acquired levels of knowledge and skill. General cognitive ability is related to all three of these, which is why it should come as no surprise that the same cognitive ability test is a valid predictor of performance in both settings."

So why do so many people believe that the abilities required for success are so different for academic and work environments? "Perhaps the fact that tests and measures are often developed for particular settings, either educational or occupational, has perpetuated this myth," say the authors. "Our prediction was – and the results confirm – that there is a general factor of cognitive ability which is a broad predictor of numerous life outcomes."


Article: "Academic Performance, Career Potential, Creativity, and Job Performance: Can One construct Predict Them All?," Nathan R. Kuncel and Sarah A. Hezlett, University of Illinois at Urbana-Champaign and Deniz S. Ones, University of Minnesota, Twin Cities Campus; Journal of Personality and Social Psychology, Vol. 86, No. 1.

Full text of the article is available from the APA Public Affairs Office or at http://www.apa.org/releases/success_article.pdf.

Lead author Nathan Kuncel, Ph.D., can be reached by e-mail at nkuncel@uiuc.edu.

The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting health, education and human welfare.

David Partenheimer | APA
Further information:
http://www.apa.org/releases/success.html
http://www.apa.org/releases/success_article.pdf

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>