Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist find more efficient way to "unlearn" fear

06.10.2003


Could help improve treatment of anxiety

Behavior therapists may have a better way to help anxious patients, thanks to insights from a UCLA study of different ways to get mice past their fears. Rodents have long been used to study learning by association. Neuroscientists compared different ways of exposing mice to a stimulus that they had learned to fear, and found that "massing" the feared stimulus -– delivering it in concentrated bursts, not pacing it with longer pauses in between -- was surprisingly efficient at helping to erase its impact. This study appears in the October issue of the Journal of Experimental Psychology: Animal Behavior Processes, which is published by the American Psychological Association.

According to the authors, doctoral students Christopher Cain and Ashley Blouin, and Mark Barad, M.D., Ph.D., these findings are significant for clinical behavioral therapy, which has been scientifically proven to work in a range of human anxiety disorders, including specific phobias, panic disorder, social phobia, post-traumatic stress disorder, and obsessive-compulsive disorder.



At the University of California, Los Angeles, the researchers taught mice (in most conditions, eight at a time) to fear harmless white noise by associating it with a mild shock delivered through the floor of the experimental cage. After a couple of trials, the mice "froze" –- just stopped moving, a fear response –- for about 72 seconds, or 60 percent of the two minutes of white noise. Thus, the white noise became what’s called a "conditioned stimulus." It may not have been the original source of pain, but it became sufficiently associated with pain to cause fear all by itself.

Next, Cain and his colleagues separated the mice into three groups and measured how well they overcame their aversion to white noise when they heard it 20 times for two minutes each, without shocks -– with intervals of six, 60 or 600 seconds between each presentation. Repeatedly presenting a conditioned stimulus has long been known to "extinguish" a fear by exposing animals (including humans) to that stimulus without associated pain. In the study, for example, some of the mice learned to trust that white noise would not come with shocks. In a human parallel, someone who had developed a fear of dogs after being bitten could be exposed to playful, gentle dogs as a way to re-learn that most are safe.

The only catch is that anxiety is like an unwanted houseguest: It breezes in quickly, without invitation, and is hard to kick out, as is clear from the fact that the mice feared the white noise after two exposures, but needed far more than two exposures to get over it –- and only under certain conditions. Thus, approaches that make treatment more efficient are high on therapists’ wish lists.

Cain and his colleagues found that both short-term and long-term fear extinction (immediate and one day later) were greater with "temporally massed" presentations of the stimulus, which had six-second intervals between each of the 20 bursts of white noise. The six-second-gap mice stopped showing significant freezing after about 10 presentations of white noise, or 20 minutes’ worth. The mice in the other two groups never really stopped freezing.

Given these important findings, the authors say, "Therapists may wish to incorporate some massing of anxiogenic stimuli into exposure therapy sessions to more quickly reduce the aversiveness of therapy and increase the patient’s willingness to continue with treatment."

"This very strong finding," says co-author Mark Barad, M.D., Ph.D., "is already inspiring a search for a similar pattern of response in human anxiety patients. It’s part of a recent wave of important discoveries about fear extinction, findings that will transform both the practice of behavior therapy and the use of drugs as adjuncts to psychotherapy in the next few years."

Article: Christopher K. Cain, B.A.; Ashley M. Blouin, B.A.; Mark Barad, M.D., Ph.D., "Temporally Massed CS Presentations Generate More Fear Extinction Than Spaced Presentations," Journal of Experimental Psychology: Animal Behavior Processes, Vol. 29, No. 4.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/releases/conditionalfear_article.pdf

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>