Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

F1000Research brings static research figures to life

31.07.2014

Dynamically generated images let referees and readers assess paper results 'on-the-fly'

F1000Research today published new research from Bjorn Brembs, professor of neurogenetics at the Institute of Zoology, Universitaet Regensburg, in Germany, with a proof-of-concept figure allowing readers and reviewers to run the underlying code within the online article.

This represents an important leap forward for scientific publishing, by demonstrating a completely novel framework for assessing the quality of a scholarly output.

Figure 3 in fact doesn't really exist. The authors submitted their data and their code to F1000Research, and the figure is generated 'on the fly' when the article is viewed. Readers can select the appropriate parameter to run the code and alter the figure that is generated.

The ability to adjust how data is plotted enables readers to evaluate the data for themselves, bringing scientific figures into the Internet age alongside article versioning, replication and complete transparency in the publishing process. "Ultimately, our goal is to set everything up such that we only need to submit our text with links to data and code, without ever having to fiddle with figures anymore", said Brembs.

Brembs' work suggests that naturally arising genomic differences between different stocks of the widely used animal model Drosophila melanogaster could profoundly impact on subsequent comparisons between nominally identical fly stocks.

The paper additionally includes a call for participation to other laboratories and research groups to contribute to a second proof-of-concept figure that is slated to be added to a future update of the current article. Figure 4 will enable multiple laboratories to feed in behavioral data from their local experimental setup into a single 'living' figure. The data will be generated 'on the fly' as each data stream is updated and fed into the figure. Thus readers will be able to see the evolution of the behavior of several fly strains over time.

The recent rise in retraction rates of scientific articles proves that attempts at reproducibility by other labs are crucial to cross-checking our understanding of science. With only one or two figures to choose from in the past, authors were incentivized to pick the view of the data that best demonstrated their conclusions.

"The traditional method of publishing still used by most journals today means that as a referee or reader, the data cannot be reused nor can the analysis be checked to see if all agree with the reported conclusions", said Brembs. "This slows down scientific discovery. We are pleased to be able to pioneer these two interactive figures with F1000Research, which will hopefully be the start of a big shift in the way journals treat their figures."

"The peer-reviewed journal article has been the currency of science since the 1600s, yet the pace of science publishing has amazingly not changed much", said Dr Rebecca Lawrence, Managing Director F1000Research. "We are building on our core principles of almost immediate publication, transparent refereeing and open data. We have already been the first scientific journal to enable articles to be continually updated, together with their associated data and software; now we are continuing this development for figures, enabling scientific articles to better mirror the continuous pace of scientific discovery."

For the full paper, please visit http://f1000research.com/articles/3-176/v1.

Eleanor Howell | Eurek Alert!

Further reports about: Faculty ability fly genomic differences laboratories method stocks

More articles from Science Education:

nachricht Teaching Innovation – Innovatively!
18.05.2016 | HHL Leipzig Graduate School of Management

nachricht A Finger on the Pulse of Innovation – Worldwide
09.12.2015 | Siemens AG

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>