Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CMU's Classroom Salon Uses Social Networking To Tap Collective Intelligence of Online Study Groups

04.05.2011
Innovative App Is Key Element In New Learning Model for At-Risk Youths

Taking their cue from social media, educators at Carnegie Mellon University have developed a social networking application called Classroom Salon that engages students in online learning communities that effectively tap the collective intelligence of groups.

Thousands of high school and university students used Classroom Salon (CLS), http://www.classroomsalon.org/, this past academic year to share their ideas about texts, news articles and other reading materials or their critiques of each others' writings. With the support of the Next Generation Learning Challenges initiative, funded by the Bill & Melinda Gates Foundation and the William and Flora Hewlett Foundation, CLS will be used in an innovative experiment at the University of Baltimore to see if it can help students who are in danger of failing introductory courses or otherwise dropping out of college.

"Sites such as Facebook and Twitter have captured the attention of young people in a way that blogs and online discussion forums have not," said Ananda Gunawardena, associate teaching professor in the Computer Science Department, who developed CLS with David S. Kaufer, professor of English. "With Classroom Salon, we've tried to capture the sense of connectedness that makes social media sites so appealing, but within a framework that that allows groups to explore texts deeply. So it's not just social networking for the sake of socializing but enhancing the student experience as readers and writers."

In CLS, class members can read assigned texts and then annotate them with online editing tools. These observations can then be shared with the group using CLS's novel interactive tools, which can highlight "hot spots" that spark discussion within a document, cluster similar comments and identify which comments are most influential.

"Studies show that people working in teams are able to arrive at better and more creative solutions than people working alone, and this is particularly true in reading and writing tasks. However, that collective effort is difficult to achieve in formal education settings," Kaufer said. "Class time is limited and most online course management systems tend to be driven by the instructor's questions. Classroom Salon, by contrast, makes possible more genuinely student-centered collaborative work."

All students can benefit from the kind of collective intelligence CLS makes possible, but Kaufer and Gunawardena suggest that at-risk students may benefit the most because CLS also can easily be used to personalize instruction for specific individuals and groups.

That idea will be tested in a new program, funded by a $250,000 grant through the Next Generation Learning Challenges initiative. Nancy Kaplan, professor and executive director of the School of Information Arts and Technologies at the University of Baltimore, working with collaborators at Carnegie Mellon, will combine CLS and materials developed for Carnegie Mellon's Open Learning Initiative, http://oli.web.cmu.edu/openlearning/, with traditional face-to-face instruction to create a sustainable social learning model.

The researchers will see if this new approach will help students at the University of Baltimore, an urban, open-admission institution where about half of the incoming students fail to graduate within eight years. Many are first-generation college students who attend part-time, come from low-income families, and require remedial math and writing courses.

Gunawardena and Kaufer also are exploring the commercial potential of CLS through Carnegie Mellon's Project Olympus, a program that bridges the gap between research and the marketplace by providing faculty and students with start-up advice, incubator space and business connections. The National Science Foundation, Innovation Works and the Heinz Endowments have supported the development of CLS.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu
http://www.classroomsalon.org/

More articles from Science Education:

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>