Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest ever public investment in bioenergy to help provide clean, green and sustainable fuels

29.01.2009
The biggest ever single UK public investment in bioenergy research has been announced on 27 January by the main funding agency for the biosciences - the Biotechnology and Biological Sciences Research Council (BBSRC).

The £27M BBSRC Sustainable Bioenergy Centre has been launched to provide the science to underpin and develop the important and emerging UK sustainable bioenergy sector - and to replace the petrol in our cars with fuels derived from plants.

Sustainable bioenergy offers the potential to provide a significant source of clean, low carbon and secure energy, and to generate thousands of new 'green collar' jobs. It uses non-food crops, such as willow, industrial and agricultural waste products and inedible parts of crops, such as straw, and so does not take products out of the food chain.

Minister of State for Science and Innovation, Lord Drayson, said: "Investing £27 million in this new centre involves the single biggest UK public investment in bioenergy research. The centre is exactly the sort of initiative this country needs to lead the way in transforming the exciting potential of sustainable biofuels into a widespread technology that can replace fossil fuels.

"The centre is a great example of the UK investing in innovative areas which have the benefits of creating new green collar jobs as well as helping us to meet the global challenges of climate change and reducing carbon emissions."

The BBSRC Sustainable Bioenergy Centre is focussed on six research hubs of academic and industrial partners, based at each of the Universities of Cambridge, Dundee and York and Rothamsted Research and two at the University of Nottingham. Another 7 universities and institutes are involved and 15 industrial partners across the hubs are contributing around £7M of the funding.

The Centre's research activities will encompass many different stages of bioenergy production, from widening the range of materials that can be the starting point for bioenergy to improving the crops used by making them grow more efficiently to changing plant cell walls. The Centre will also analyse the complete economic and environmental life cycle of potential sources of bioenergy.

This means the researchers will be working to make sustainable bioenergy a practical solution by improving not only the yield and quality of non-food biomass and the processes used to convert this into biofuels but ensuring that the whole system is economically and socially viable.

BBSRC Chief Executive, Prof Douglas Kell, said: "The UK has a world leading research base in plant and microbial science. The BBSRC Sustainable Bioenergy Centre draws together some of these world beating scientists in order to help develop technology and understanding to support the sustainable bioenergy sector. The Centre is taking a holistic systems-level approach, examining all the relevant areas of science needed for sustainable bioenergy and studying the economic and social impact of the bioenergy process.

"By working closely with industrial partners the Centre's scientists will be able to quickly translate their progress into practical solutions to all our benefit - and ultimately, by supporting the sustainable bioenergy sector, help to create thousands of new 'green collar' jobs in the UK."

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>