Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens Jet Process boosts flexibility of raw material use in converter steel making

27.11.2013
- Scrap or sponge iron rates between 0 and 100 percent
- Blowing in coal and post-combustion supply additional energy
- Improved mixing boosts yield and energy efficiency
- Effective decarburization and desulfurization of liquid steel

With the Jet Process, Siemens Metals Technologies offers a solution for operating converters with up to 100 percent scrap and sponge iron. This enables operators of melt shops to respond to raw material supply bottlenecks and exploit short-term price fluctuations.


The Siemens Jet Process increases the flexibility of raw material selection on the converter. Oxygen, lime and coal are blown in through bottom tuyeres and a top lance blows hot jet onto the bath. This results in excellent mixing and optimal use of the blown-in coal.

The solution consists of a bottom-blowing converter that makes it possible to blow in oxygen, lime and coal through bottom tuyeres and of a hot blast top lance for feeding additional energy into the steel bath. The Jet Process can either be implemented as a new installation or retrofitted in existing plants in a modular fashion.

Falling prices for scrap and direct reduced iron (sponge iron) as well as pressure from public authorities to reduce CO2 emissions offer stimuli for operators of integrated steel works to increase the share of scrap and sponge iron in the converter steel plant. Due to increasing price volatility, it has also become necessary to be able to flexibly adjust amounts of scrap and sponge iron to the respective market situation. A higher share of scrap or sponge iron calls for a supply of additional energy to maintain the temperature of the steel bath.

To fulfill these requirements, Siemens has developed a converter with bottom-blowing equipment and a hot blast lance. Oxygen, lime or coal can be fed into the steel bath with the aid of bottom tuyeres jets. Additionally, a top lance is used to blow a hot blast enriched to up to 40 percent of oxygen and a temperature of around 1,300 °C onto the bath. As a result of the high temperature, the speed of sound and the volume of the hot blast are high. This leads to excellent mixing, almost complete combustion of CO from the bath and optimum transfer of the heat generated in post combustion to the steel bath. A pebble heater with an energy efficiency of more than 95 percent is used to create the hot blast. Furthermore, the converter is equipped with a cooling stack to fully exploit the remaining thermal energy of the exhaust gas.

The bottom-blowing converter offers even more advantages. The oxygen bottom jets act as cutting torches, for example, enabling even large pieces of scrap to be melted with greater ease than in a conventional converter. Blowing in lime powder accelerates slag formation and desulfurization, thus improving process control. Bottom blowing also ensures a lower share of iron and iron oxide in the slag and lower slag volume in total, reducing evaporation of iron and crucially increasing the converter's yield and thus its profitability. The injected volume of coal can be varied within a wide scope. This permits easy and fast adjustment of the raw material composition to current market prices.

The Jet Process is particularly suitable for use in regions where scrap or sponge iron are relatively cheap compared to hot metal. It can also be used to circumvent bottlenecks in the availability of hot metal, either due to a planned production expansion, temporary unavailability of a blast furnace or because of production restrictions resulting from emission constraints imposed by authorities. The Jet Process has been successfully in operation at an Asian steel works since mid-2013.

Bottom-blowing converters with hot blast technology are part of the Siemens portfolio for special converters, offering steel producers greater flexibility in the use of raw materials, in particular if rates of scrap or sponge iron are high. Shares of up to 100 percent can be processed with these converters, much more than in conventional LD (BOF) converters. The special converters therefore close the gap between conventional converters and the electric steel production route.

Further information about solutions for steel works, rolling mills and processing lines is available at: www.siemens.com/metals

Follow us on Twitter at: www.twitter.com/siemens_press

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Metals Technologies Business Unit (Linz, Austria), part of the Siemens Industry Sector, is one of the world's leading life-cycle partners for the metals industry. The Business Unit offers a comprehensive technology, modernization, product and service portfolio as well as integrated automation and environmental solutions covering the entire life cycle of plants. For more information, visit http://www.siemens.com/metals

Reference Number: IMT201311529e

Contact
Mr. Rainer Schulze
Metals Technologies
Siemens AG
Turmstr. 44
4031 Linz
Austria
Tel: +49 (9131) 7-44544
rainer.schulze​@siemens.com

Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>