Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not-So-Spotty Material Breakthrough

01.09.2004


Transmission electron microscope image of nickel nanodots embedded in an aluminum oxide matrix. Credit: Jagdish Narayan and Ashutosh Tiwari, North Carolina State University/NSF Center for Advanced Materials and Smart Structures.


Researchers master self-assembly of novel nanodots

Using pulsed lasers, researchers have coaxed the metal nickel to self-assemble into arrays of nanodots – each spot a mere seven nanometers (seven billionths of a meter) across – one-tenth the diameter of existing nanodots.

Because the method works with a variety of materials and may drastically reduce imperfections, the new procedure may also bolster research into extremely hard materials and efforts to develop ultra-dense computer memory.



The researchers are working with an industry partner to apply the technique to development of next-generation light-emitting diodes (LEDs) – the small, bright lights seen in traffic signals and luxury automobile brake lights. The experimental LEDs are already more efficient than existing devices, potentially lasting decades and using a fraction of the power of fluorescent bulbs.

Jagdish Narayan and Ashutosh Tiwari, both of North Carolina State University and the National Science Foundation’s Center for Advanced Materials and Smart Structures, invented the new materials and manufacturing processes.

They announced their findings in the September, 2004, issue of Nanoscience and Nanotechnology.

Narayan and Tiwari used a pulsed excimer laser to create conditions under which nickel self-assembles into 3-D, ordered arrays within aluminum oxide and titanium nitride matrices. Applying similar techniques to gallium nitride and zinc oxide, the researchers are hoping to further improve the efficiency of their LED devices.

Computer applications are further away, as many additional hurdles need to be cleared before the nanodots become actual chips. However, since every nickel-metal nanodot could theoretically store a single bit of information, the researchers believe that a one-inch chip using that technology could eventually store 10 Terabits of data.

According to the researchers, the chip would theoretically have several hundred times more storage than conventional microchips of the same size. Five Terabits could fit on, coincidentally, a nickel. If nanodot memory chips eventually succeed, the entire contents of the Library of Congress could fit onto a pocket full of "change."

From the researchers:

"The grand challenge is to build, efficiently and reliably, a nanostructure using nanounits. But nature doesn’t like to create nano-sized units of uniform size—they are at a higher energy state." – Jagdish "Jay" Narayan, John C. C. Fan Family Distinguished Chair in Materials Science at North Carolina State University and Director, NSF Center for Advanced Materials and Smart Structures

"Controlled processing and self-assembly in three dimensions are required because you cannot create these structures and then assemble them. They are too small. So to be able to use this technology, you must have self-assembly and it must be 3-D." – Jagdish "Jay" Narayan

"In the past we could make only one-layer structures and 3-D self-assembly wasn’t possible. We couldn’t control the medium. Now, with this development we can control the medium and do 3-D self-organization. More importantly we can change the size in different layers and can change the functionality at different depths." – Jagdish "Jay" Narayan

"The research provides the basic framework for nanostructured materials for information storage, spin transistors, single-electron transistors and hydrid devices, superhard coatings, and novel biomaterials." – Jagdish "Jay" Narayan

"In the 6-10 nm dots created so far, we have the ability to control the spin patterns – the spin is what stores the bit of information. Assuming a 7nm magnetic nanodot will store one bit of information, we can achieve over 10 trillion bits per square inch, which is close to 500 times the existing storage density." – Jagdish "Jay" Narayan

From experts at NSF:

"Narayan has used the basic concepts of self-assembly to create a 3-D array of nanodots which may have significant applications in lighting, lasers, spintronics, and optical devices. If developed for practical applications in the next 2-3 years, the nanodot lighting systems may have significant environmental, economic and energy-saving advantages." – Mihail C. Roco, Senior Advisor for Nanotechnology, NSF

"The study shows the importance of basic research and encouraging technical innovation. This device is part of the first generation of passive nanostructures and illustrates how one might exploit new phenomena and behavior of materials at the nanoscale for economic advantage." – Mihail C. Roco

"In a way, this is an illustration of a general objective of United States’ National Nanotechnology Initiative (NNI) – the systematic control of the nanoscale in order to obtain new properties and functions." – Mihail C. Roco

"We are creating infrastructure: NCSU has established a strength in the area of nanostructured materials, and at this moment, we can see several results that weren’t initially planned." – Mihail C. Roco

"The expansion of infrastructure for nanoscale research has created a huge base of scientific discovery and potential technological development. A similar trend can be seen in education. From 5 universities with graduate programs in 1999, we now have about 270 academic institutions with undergraduate and graduate programs related to nanoscale science and engineering." – Mihail C. Roco

Josh Chamot | NSF News
Further information:
http://www.nsf.gov
http://www.mse.ncsu.edu/CAMSS/nano
http://www.engr.ncsu.edu/news/news_articles/narayan.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>