Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spying on a Cell - New Nanosensors a Body Can Live With

31.03.2004


For two decades, chemists have been making great strides in analyzing the biological functions that drive living cells. But many biological substances still remain undetectable.




That will soon change, thanks to a biological sensor being developed by University of Arizona chemists. Their new sensor platform has many capabilities that current ones lack.

Most intracellular sensors are made from hard plastics (polymers). The plastic is formed into solid, nanometer-sized, BB-like beads, which are doped with chemicals. These chemicals make them sensitive to a variety of ions and molecules. But scientists can only detect intracellular compounds that react optically with these chemicals.


Current biological sensors have several other drawbacks. Imaging dyes and proteins, fiber optics sensors, and coated nano-sized beads can disrupt cellular processes. In addition, they sometimes break down chemically or can be toxic. They also can’t reveal the kinds of chemical processes occurring or their rates of reaction in real time. And they can’t detect large molecules, such as proteins.

"Our new technology takes advantage of some very specific and useful biology," said UA chemist Craig Aspinwall. "It’s the ability of ions, molecules or groups of molecules to interact with certain proteins. We can use those proteins to report the presence of specific ions and molecules."

Aspinwall takes an unconventional approach to constructing tiny devices that safely transport and hold these proteins within a cell.

He starts by making nanometer-sized hollow shells of phospholipids that self-assemble. The self-assembled phospholipids are then "polymerized," or chemically linked, to form the sensors. Since phospholipids are the major component of cell membranes, they are biocompatible. A hundred can be released inside a cell without affecting cellular functions. The shells’ hollow shape allows them to safely hold water-soluble — or even toxic — indicator dyes and enzymes that can be used to ferret out the details of chemistry inside living cells.

In short, chemists can select proteins that interact with specific ions, molecules or groups of molecules, stick them into nanoshell membranes, and send them inside the cell to sniff out specific substances.

"What we’re trying to do at this point is incorporate ion channels as detectors," Aspinwall said. An ion channel is a molecule that moves a specific kind of ion by opening or closing in response to the presence of that ion or certain other chemicals. When that ion or these chemicals move through the ion channel into the nanoshell, it modifies the ion channel protein. Scientists can detect that change by a variety of techniques.

Aspinwall’s group has monitored oxygen using the new sensor, and his team is also constructing a glucose sensor, which may help in fighting diabetes.

"Anything that interacts with a membrane protein or anything that can be transported by a membrane protein is a potential target," Aspinwall said. "This opens up an entirely new world of molecules that chemists can look at."

"What really makes our sensors novel is that, to my knowledge, we are the only group working with a functional, polymerized lipid," Aspinwall said. "There is no commercially available product like this. It has to be synthesized on this campus."

The late David O’Brien, who was also a UA chemist, laid the groundwork for this new technology when he began making self-assembing lipid polymers in his laboratory a decade ago. UA chemists working in his lab have created chemically and environmentally stable polymer lipids, which have made Aspinwall’s research possible.

These bio-friendly polymers can be exposed to chemicals and radiation, dehydrated and rehydrated, heated, or stored for long periods of time, yet remain intact.

Aspinwall will discuss this new technology today at the American Chemical Society national meeting in Anaheim, Calif

Lori Stiles | University of Arizona
Further information:
http://ali.opi.arizona.edu/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=8762

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>