Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers develop quick, inexpensive method to prototype microchips

08.01.2004


Purdue University researchers have developed a new method to quickly and inexpensively create microfluidic chips, analytic devices with potential applications in food safety, biosecurity, clinical diagnostics, pharmaceuticals and other industries.


Purdue University graduate student Tom Huang assembles a new microfluidic chip by placing a thin layer of a flexible polymer on a glass microscope slide. The new method of producing these chips saves time and money and uses materials easily acquired by any research laboratory. (Purdue Agricultural Communications photo/Tom Campbell)



"This development democratizes the preparation of microfluidic biochips," said Michael Ladisch, Distinguished Professor of Agricultural and Biological Engineering and Biomedical Engineering. "This brings the design and manufacture of these devices within reach of scientists in many laboratories who can now easily test their ideas and conduct research within a typical laboratory setting."

Microfluidics is a branch of nanotechnology that involves manipulating minute quantities of liquids, typically in a chip device approximately the size of a postage stamp. The initial design and manufacture of these chips often requires weeks of work, but the new approach developed by Ladisch and Tom Huang, a graduate student in chemical engineering, cuts that time to hours.


Microchips have traditionally been made through a lengthy and expensive process called photolithography, which uses X-rays or ultraviolet light to form a pattern on a glass or silicon wafer that is then etched by washing the wafer with a variety of solvents. The key to controlling the shape and size of the patterns on the wafer is the production of a template, which can take weeks to develop.

Ladisch and his team have developed an alternative method that uses materials easily acquired by any research laboratory, including glass microscope slides, tweezers, thin glass fibers such as those found in glass wall insulation, and a flexible polymer called PDMS that is available from most scientific supply companies.

"What we’ve done is really thinking outside of the box," said Nate Mosier, an assistant professor of agricultural and biological engineering who also contributed to this project. "This is a radical departure from using photolithography to make these devices."

The speed and simplicity of Ladisch’s method gives researchers the flexibility to experiment with the conception and construction of microchips that can test any number of ideas.

"This whole device can be developed and in operation in less than two hours," Ladisch said. "Tools like this that take a lot less time to make and that can be manufactured in any lab are going to speed up the rate of research."

Mosier said, "The capability for rapid prototyping and working out design considerations before the manufacturing step is important to any development, from the micro-scale on up.

"It’s always very difficult to the make the first of anything -- the second through the millionth are much easier."

The new chip assembly method involves placing a fine fiber - approximately one-tenth the width of a human hair - on a glass slide and covering it with a small square of the polymer PDMS. The polymer flexes slightly over the fiber, creating a small channel on either side of the fiber, much the same way that a sheet of plastic wrap placed on top of a pencil would bend, making two channels running the pencil’s length.

A small amount of pressure applied with a finger is enough to cause the PDMS to stick to the glass slide, Mosier said.

"The chemical properties of the PDMS allow it to stick to the glass slide with enough strength to form a tight seal, which permits us to pump liquids through the channel," Ladisch said.

In addition, he said, the small size of the channel - not quite the width of a strand of hair - allows researchers to minimize their use of experimental liquids, which may be costly or difficult to obtain.

In their proof-of-concept paper, published in the November issue of the American Institute of Chemical Engineers Journal, the team showed that coating the fibers with materials that attract different types of molecules allowed them to separate specific proteins from a mixed solution.

By manipulating the fiber’s properties, scientists can identify or separate various types of molecules, such as proteins or antibodies, from solutions pumped through the chip.

Depending on the properties of the fiber, liquids placed at one end of the channel move through the device by "wicking" along the fiber, or by being pulled through by with a weak vacuum at the opposite end of the channel.

"We can control the chemistry inside the channel to determine what flows through, what sticks, and in that way we can separate things out," Huang said.

This ability translates into numerous potential applications, such as the ability to diagnose diseases or detect foodborne pathogens and biological agents.

"These kinds of chips are essential from a security perspective," said Bob Armstrong, senior research fellow at the National Defense University, one of the organizations that funded this research.

"Microfluidic chips are becoming part of a sensor system to detect, for example, biological or chemical agents, or pathogens in the food supply. What is it you want to detect? Your imagination is the only limit on how to use these devices."

Also collaborating on this research were Woo-Jin Chang, research associate in electrical and computer engineering; Demir Akin, senior research scientist in electrical and computer engineering; Rafel Gomez, former graduate student in electrical and chemical engineering; and Rashid Bashir, associate professor of electrical and computer engineering and biomedical engineering.

The research is part of an ongoing project sponsored through the Purdue Center for Food Safety Engineering and the Purdue Laboratory of Renewable Resources Engineering. Funding was provided by the Agricultural Research Service of the U.S. Department of Agriculture, and the Center for Technology and National Security Policy at the National Defense University in Washington, D.C., is contributing to the further development of this concept.

Writer: Jennifer Cutraro, (765)496-2050
Sources: Mike Ladisch, (765)494-702 , ladisch@purdue.edu
Nate Mosier, (765)494-6695, mosiern@purdue.edu
Tom Huang, (765)494-0326, huangt@purdue.edu
Bob Armstrong, (202) 685-2532, armstrongre@ndu.edu
Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Jennifer Cutraro | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040107.Ladisch.chip.html
http://engineering.purdue.edu/IIES/LORRE/

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>