Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital imaging system helps bakery produce perfect buns

26.11.2003


The perfect bun: That’s one of the goals of an automated product-inspection prototype under development by Georgia Tech researchers working with Flowers Bakery in Villa Rica, Ga.


An automated product-inspection prototype is under development by Georgia Tech researchers working with Flowers Bakery in Villa Rica, Ga. Researchers are introducing continuous imaging technology to the large-scale production of sandwich buns.
Georgia Tech Photo



An automated product-inspection prototype is under development by Georgia Tech researchers working with Flowers Bakery in Villa Rica, Ga. Researchers are introducing continuous imaging technology to the large-scale production of sandwich buns.
Georgia Tech Photo 300 dpi version

The first phase of the work is introducing continuous imaging technology to the large-scale production of sandwich buns for fast-food restaurants, which hold to exacting product specifications.



The fresh-baked buns are scanned by a digital camera as they move along Flowers’ production line. Items not measuring up in terms of color, shape, seed distribution, size or other criteria are identified by the computerized eye’s imaging software and eventually removed automatically from the conveyor.

The system concept is under development by engineers from the Georgia Tech Research Institute’s (GTRI) Food Processing Technology Division in association with researchers from Georgia Tech’s School of Electrical and Computer Engineering (ECE) and BakeTech, a baking equipment manufacturer in Tucker, Ga.

The project was made possible, in part, by funding from Georgia’s Traditional Industries Program for Food Processing, a 10-year-old research and development program designed to improve the market competitiveness of Georgia’s food processing industry -- the state’s second-largest employer. The Food Processing Advisory Council (FoodPAC) oversees such state-funded research grants.

The computerized imaging system in development will automate the inspection process at Flowers. Ultimately, the new approach will save money and time by increasing yield and reducing waste, says Doug Britton, a GTRI research engineer and co-principal investigator for the project.

“It should reduce the time between noticing a problem and fixing it,” Britton explains. Also, the system will automatically record data, such as product count and the number of out-of-spec buns, to generate production reports. “Flowers will have all this data immediately for doing statistical process control so they can implement changes that reduce the number of poor-quality buns,” he adds. “They’ll get a better handle on what they are producing."

The second phase of the project will extend automation by providing in-line mechanisms to correct the vagaries leading to poor-quality products. Proofers and ovens -- the heat- and humidity-controlled chambers where dough is sent to rise and bake -- are subject to normal disturbances that can affect product quality. Automatically compensating for those disturbances reduces time spent correcting problems.

School of Electrical and Computer Engineering researchers, working with the GTRI team, are using data from the screening and image-processing phase and from additional sensor inputs to build a supervisory control system. It will be able to make changes in the proofer and oven settings to fix problems as they are detected.

“Baking is both a science and an art,” says Professor Bonnie Heck, Britton’s colleague from ECE. “Good bakers know both and are able to react based on experience and feedback from the process. We’re trying to enhance the ability of expert and novice bakers alike to make better quality-control adjustments, while also adding automation that can mimic some of those adjustments dynamically.”

While the computerized quality-control and self-correcting production system holds great commercial promise for the baking industry, Britton says, generic aspects of the technology may be adapted to other food processing industries as well.

Jane Sanders | Georgia Tech
Further information:
http://gtresearchnews.gatech.edu/newsrelease/bakery.htm

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>