Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical Breakthrough in Engineering and Monitoring 3-D Tissue

13.10.2003


Researchers at Oxford University’s Department of Engineering Science have recently made great lengths in both engineering and monitoring 3-dimensional tissue.


Experimental hollow fibre bioreactor.



Engineering tissue involves the seeding of appropriate cells into a scaffold to form a bio-construct or matrix. The Oxford team has improved this process by developing a new kind of nutrient circulation and scaffold system for 3-D bulky tissue culture. The scaffold, made from biopolymers or synthetic polymers, has a network of capillaries embedded within it that can service the cells that attach themselves to the scaffold, allowing new tissue to grow. The capillary network is made of semi-permeable membranes whose pore size is sufficiently small to keep cells from leaving the system.

The unique Oxford system employs biodegradable porous membrane capillaries to mimic the blood capillary network in natural tissue. Traditionally, engineered tissue is governed by the diffusion of nutrients from outside the scaffold, but this system employs a system of capillaries that deliver nutrients and remove metabolic waste deep inside. Additionally, the capillary membrane is biodegradable, meaning that as time progresses the pores will widen, allowing more nutrients in and waste out. The Oxford system not only allows tissue of greater density to be grown, but as the tissue becomes bulkier, epithelial cells can be introduced in to the capillaries to promote blood vessel formation. This invention enables the culture of 3-dimensional tissues opening the possibility of growing more complex structures (such as complete organs).


Engineered Tissue Probes
To monitor the engineered tissue from the new system, Oxford researchers have also developed a technology for the on-line monitoring of cell metabolic activity, cell viability, function and tissue status.

It is important to monitor cell activity and functions inside three-dimensional engineered tissue during the culture process in vitro in order to optimise the design and operation of the tissue culture process. It is also critical to monitor tissue status following transplant/implant (e.g. tissue grafts and implantation of engineered tissue). Possible techniques at present include MRI and ultrasound, but both are time consuming, expensive, give low resolution of images and only provide limited biochemical data.

Measuring the condition of grafted tissue and possible signs of cell stress following an implant or transplant, and measuring correct cell environment and growth in tissue cultures, is invaluable to the medical community. Addressing this need, the Oxford team has developed a micro membrane probe that samples soluble markers of cellular metabolism and tissue turnover both non-destructively and quantitatively within engineered tissue. The probe operates during culture periods in a bioreactor and allows for subsequent on-line and off-line analyses. The technology also has applications in meat and fish quality inspection (for contaminants such as bacterial toxins, heavy metals and pesticides).

Isis Innovation, the technology transfer company of the University of Oxford, has filed patent applications on both the new system for engineering tissue, and for the tissue probes. Isis welcomes contact from companies interested in commercialising these exciting new technologies.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1088.html

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>