Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interesting Approaches in Model Construction for Controlling a Glass Melt

03.07.2003


In this year’s competition of the international scientific association, EUNITE, three teams have succeeded in predicting the temporal development of the five response signals in the process control of a glass melting tank (with 29 input parameters) over a period of two weeks. The – weighted – deviation of the modelled values from the real values was 0.3 per cent. The winners will present their results at the EUNITE Conference from 10th to 12th July in Oulu, Finland. As an expression of its gratitude, Schott Glas will award prizes in the amounts of 5000 € (1st place), 3000 € (2nd place), and 1000 € (3rd place). “We could not actually apply the concrete values from the prediction for plant control, perhaps because some decisive parameters had not yet been recorded, but the proposed model approaches are of great value to us”, said Dr. Katharina Lankers, who had arranged the competition on behalf of Schott Glas.



EUNITE is a European association of scientists at universities and in industry; it is supported by the European Union with the objective of forming a network for excellence. EUNITE is dedicated to improvements in so-called intelligent, adaptable systems. The modelling abilities of the scientists are tested in an annual competition. The competition is coordinated by Lecturer Dr. Jens Strackeljan at the Institute of Technical Mechanics at the Technical University of Clausthal.

The winners are Marcin Wojnarski at the University of Warsaw, Poland, first place; Dr. Bernhard Pfahringer at Waikato University in New Zeeland, second place; Dr. Dumitru-Iulian Nastac and Adrain Costea at the Computer Science Centre in Turku, Finland, third place. A total of twenty proposed solutions were received, some of them from the United States and Brazil, among other countries.


What was the problem posed for this competition? The data, 29 real input values as well as five real output values, each recorded at 15-minute intervals, were provided by Schott Glas, Mainz. These data were rescaled operational data for the control and indirect quality measurement of a glass melt over a period of fourteen weeks. The real physical meaning of these data was not revealed to the participants in the competition, since this, of course, is a company secret.

The measured values were supplied to the scientists in raw form; that is, they had not been pretreated or freed from interference, and noise was not suppressed. Thus, preparation of the data for modelling constituted a part of the given problem. A further difficulty was the frequent delay of hours or even days between the variation of an input signal and the “response” from the glass melting tank.

During the last two weeks, only the real input values to the system, that is, only the control targets of the process engineers and the sometimes unexpected, but measurable external effects, were known to the scientists. The manner in which the melt reacts to these inputs was not indicated to the scientists.

The problem for the scientists was to predict the behaviour of the glass melt. Their predictions and the derived mathematical correlations between the input and output values were subjected to an empirical test by comparison with the real values. The time-weighted deviation of the process behaviour predicted by the winners from the real values amounted to 0.3 per cent. They will present their results at the EUNITE Conference from 10th to 12th July in Oulu, Finland. As an expression of its gratitude, Schott Glas will award prizes in the amounts of 5000 € (1st place), 3000 € (2nd place), and 1000 € (3rd place).

PD Dr. Jens Strackelan | alfa
Further information:
http://www.eunite.org/eunite/index.htm

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>