Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon demonstrates autonomous robot

02.06.2003


Explores abandoned mine



Carnegie Mellon University researchers, working with the Pennsylvania Department of Environmental Protection (DEP) and the U.S. Department of Labor’s Mine Safety and Health Administration (MSHA), will demonstrate a prototype, autonomous wheeled robot today as it explores and maps a 3,500-foot corridor of an abandoned coal mine near New Eagle in southwestern Pennsylvania.

Named Groundhog, the robot was developed by students in the Robotics Institute’s Mobile Robot Development class. It’s armed with an array of cameras, gas, tilt and sinkage sensors, laser scanners and a gyroscope to help it surmount the obstacles it will encounter during its unprecedented journey. Typical hazards in an abandoned mine could include roof fall, abandoned equipment and ponded water.


Groundhog will enter the Mathies Mine from a portal near its supply yard and make its way through the darkness to a coal preparation plant more than a half-mile away. The robot travels at a speed of 15 centimeters a second. It will be equipped with a wireless video system that will send back images from the first 500 feet into the mine and, if all goes as planned, from the final 500 feet of its odyssey. Researchers expect that it will take the robot three hours to travel from portal to portal in the mine.

To fulfill its mission, the robot uses perception technology to build maps from sensor data. It must make its own decisions about where to go, how to get there and, more important, how to return safely. Reliable navigation technology is important because of the hazards in abandoned mines. The robot also contains computer interfaces that enable people to view the results of its explorations and use the maps it develops. Groundhog incorporates a technique developed at Carnegie Mellon called Simultaneous Localization and Mapping or SLAM, which enables robots to create maps in real time even as they explore an area for the first time.

"Groundhog has to be ultra reliable because we don’t have the option of taking control of it to correct its mistakes," said Robotics Institute Systems Scientist Scott Thayer, who teaches the Mobile Robot Development class with Robotics Institute Fredkin Research Professor William L. Red Whittaker. "The key is our state-of-the-art autonomous exploration and mapping software technology. The robot creates the map, makes its own plan, explores and comes back with useful information."

Groundhog was developed in response to an incident at the Quecreek Mine near Somerset, Pa. last July, when nine miners nearly drowned when they accidentally breached the wall of an adjacent flooded mine that they thought was a safe distance away from where they were working. Inaccurate maps were cited as a cause of the accident.

Robotics Institute students did a demonstration of Groundhog last fall at a mine near Burgettstown, Pa. The robot, which was on a tether, traveled 150 feet into the facility that had been abandoned since 1920. That expedition proved the feasibility of using mapping technology to explore abandoned mines.

"Because it’s autonomous, Groundhog represents one of the real junctions in robotics technology," Whittaker said. "The Groundhog is only the beginning. We see future generations of machines that will swim, crawl and climb through mines to enhance safety, support rescue and ultimately enable robotic operations beyond mining in caves, bunkers, aqueducts and sewers."

The Pennsylvania Department of Environmental Protection has given the Carnegie Mellon researchers a grant to develop another robot called Ferret, a cylindrical device designed to be dropped through boreholes into a void. It uses a laser rangefinder to build 3D maps of an otherwise inaccessible space.

"The Commonwealth is committed to researching new technologies that can help us map abandoned mine workings, and we are pleased to partner with Carnegie Mellon University’s Robotics Institute as they explore the possibility of sending a robot in to map the extent of these mine voids," said DEP Acting Secretary Kathleen A. McGinty. "These are areas out of reach to those of us on the surface, but if we can use robotic technology to chart these workings, then we will have gained an invaluable tool in our efforts to protect the miners of the Commonwealth from facing another tragedy such as the Quecreek Mine accident."

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Process Engineering:

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

nachricht Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant
17.02.2016 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>