Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon demonstrates autonomous robot

02.06.2003


Explores abandoned mine



Carnegie Mellon University researchers, working with the Pennsylvania Department of Environmental Protection (DEP) and the U.S. Department of Labor’s Mine Safety and Health Administration (MSHA), will demonstrate a prototype, autonomous wheeled robot today as it explores and maps a 3,500-foot corridor of an abandoned coal mine near New Eagle in southwestern Pennsylvania.

Named Groundhog, the robot was developed by students in the Robotics Institute’s Mobile Robot Development class. It’s armed with an array of cameras, gas, tilt and sinkage sensors, laser scanners and a gyroscope to help it surmount the obstacles it will encounter during its unprecedented journey. Typical hazards in an abandoned mine could include roof fall, abandoned equipment and ponded water.


Groundhog will enter the Mathies Mine from a portal near its supply yard and make its way through the darkness to a coal preparation plant more than a half-mile away. The robot travels at a speed of 15 centimeters a second. It will be equipped with a wireless video system that will send back images from the first 500 feet into the mine and, if all goes as planned, from the final 500 feet of its odyssey. Researchers expect that it will take the robot three hours to travel from portal to portal in the mine.

To fulfill its mission, the robot uses perception technology to build maps from sensor data. It must make its own decisions about where to go, how to get there and, more important, how to return safely. Reliable navigation technology is important because of the hazards in abandoned mines. The robot also contains computer interfaces that enable people to view the results of its explorations and use the maps it develops. Groundhog incorporates a technique developed at Carnegie Mellon called Simultaneous Localization and Mapping or SLAM, which enables robots to create maps in real time even as they explore an area for the first time.

"Groundhog has to be ultra reliable because we don’t have the option of taking control of it to correct its mistakes," said Robotics Institute Systems Scientist Scott Thayer, who teaches the Mobile Robot Development class with Robotics Institute Fredkin Research Professor William L. Red Whittaker. "The key is our state-of-the-art autonomous exploration and mapping software technology. The robot creates the map, makes its own plan, explores and comes back with useful information."

Groundhog was developed in response to an incident at the Quecreek Mine near Somerset, Pa. last July, when nine miners nearly drowned when they accidentally breached the wall of an adjacent flooded mine that they thought was a safe distance away from where they were working. Inaccurate maps were cited as a cause of the accident.

Robotics Institute students did a demonstration of Groundhog last fall at a mine near Burgettstown, Pa. The robot, which was on a tether, traveled 150 feet into the facility that had been abandoned since 1920. That expedition proved the feasibility of using mapping technology to explore abandoned mines.

"Because it’s autonomous, Groundhog represents one of the real junctions in robotics technology," Whittaker said. "The Groundhog is only the beginning. We see future generations of machines that will swim, crawl and climb through mines to enhance safety, support rescue and ultimately enable robotic operations beyond mining in caves, bunkers, aqueducts and sewers."

The Pennsylvania Department of Environmental Protection has given the Carnegie Mellon researchers a grant to develop another robot called Ferret, a cylindrical device designed to be dropped through boreholes into a void. It uses a laser rangefinder to build 3D maps of an otherwise inaccessible space.

"The Commonwealth is committed to researching new technologies that can help us map abandoned mine workings, and we are pleased to partner with Carnegie Mellon University’s Robotics Institute as they explore the possibility of sending a robot in to map the extent of these mine voids," said DEP Acting Secretary Kathleen A. McGinty. "These are areas out of reach to those of us on the surface, but if we can use robotic technology to chart these workings, then we will have gained an invaluable tool in our efforts to protect the miners of the Commonwealth from facing another tragedy such as the Quecreek Mine accident."

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Process Engineering:

nachricht Small parts make the difference
12.01.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nanopores could take the salt out of seawater
12.11.2015 | University of Illinois at Urbana-Champaign

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>