Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Fabrication of High Resolution Printed Circuit Boards (PCBs)

11.12.2002


Through precise control of the etching process, an inventor in Oxford University’s Photofabrication Unit has made the reliable production of High Resolution Printed Circuit Boards (PCBs) with conductors down to 10 µm wide more of a cost-effective reality.

With increasing demands for greater miniaturisation and the use of flexible circuitry, the need for improved fabrication methods for high resolution printed circuit boards is becoming more important. PCBs currently include conductors with a width of 150 µm, but industry now requires conductors to be as narrow as 25 µm, and even as narrow as 10 µm. With current manufacturing techniques it is not possible to attain the required precision, especially where the spacing between the conductors varies. The etching rate is highest where the conductors are furthest apart, leading to over-etching and subsequent under-cutting of the very fine conductors in these areas. The resultant PCB has copper conductors of variable width, and therefore its performance is not optimum.

By controlling the etch conditions and the area to be etched, the Oxford inventor has reduced the amount of over-etching to an acceptable level, and under-cutting has been virtually eliminated. The spaces between the conductors are now all of uniform width, but with more redundant copper remaining on the PCB, resulting in the etching being confined to narrow tracks. In the magnified view of an actual PCB, the white areas represent the exposed copper tracks, while the black areas show the intervening non-conducting substrate.



This exciting new technology will benefit many of the applications that now demand PCBs with fine conductors or alternatively require flexible circuitry to facilitate yet further miniaturisation, including mobile phones, personal flip-top organisers and inkjet printers.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application for this technology and welcomes contact from companies interested in commercially developing this technique.

Jennifer Johnson | alfa

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>