Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop ’fingerprinting’ for biological agents

30.08.2002


Scientists at Northwestern University have developed a powerful new method for detecting infectious diseases, including those associated with many bioterrorism and warfare threats such as anthrax, tularemia, smallpox and HIV.



A research team led by Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, has invented a technique for creating thousands of DNA detection probes made of gold nanoparticles with individual molecules attached. Much like human fingerprints, these molecules act as unique signals for the presence of different biological agents. The new detection method, for instance, can easily distinguish smallpox’s distinct "fingerprint" from that of HIV.

"By providing a near infinite number of signals, this advance allows researchers to quickly and accurately screen a sample for an extraordinarily large number of diseases simultaneously," said Mirkin, also George B. Rathmann Professor of Chemistry.


Results, which include testing for genetic markers for six biological agents including hepatitis A, smallpox and HIV, will be published in the Aug. 30 issue of the journal Science. The new technology, which takes advantage of a technique called Raman spectroscopy, improves upon optical detection methods reported previously by Northwestern in Science.

Mirkin’s group has been pioneering the use of nanoparticles as a potential replacement for the more expensive polymerase chain reaction (PCR) and conventional fluorescence probes, the most widely used detection technology. It currently take days and sometimes weeks for results of genetic screening and disease diagnosis to come back from the laboratory.

"PCR was an extraordinary advance in diagnostics, but its complexity prohibits the development of easy-to-use diagnostic systems that can produce quick results in the field or in the doctor’s office," said Mirkin. "Once a disruptive technology like PCR is invented, it creates a challenge for scientists to develop something even better."

The new detection method involves designing probes for each disease agent. Each probe consists of a tiny gold particle approximately 13 nanometers in diameter. (In comparison, a human hair is 10,000 nanometers wide.) Attached to the particles are two key items: molecules that provide a unique signal (the "fingerprint") when a light is shined on them and a single strand of DNA designed to recognize and bind a target of interest, such as smallpox or hepatitis A.

These designer probes are used in conjunction with a chip spotted with strands of DNA designed to recognize different disease targets. If a disease target is present in the sample being tested, it binds to the appropriate spot on the chip. Corresponding nanoparticle probes latch onto any matches. The chip is then washed and treated with ordinary photographic developing solution. Silver coats the gold nanoparticles where a match has taken place. A laser is scanned across the chip, and the signals for the probes are recorded. A unique "fingerprint" can be designed for each biological agent.

"The silver enhances the signal by many orders of magnitude, creating a highly sensitive method for detecting DNA," Mirkin said. "Our technique seems to surpass conventional fluorescence-based methods in almost every category -- sensitivity, selectivity, ease of use and speed -- and has the potential to be very inexpensive." The "fingerprinting" method also offers a greater number of distinct signals than conventional methods, meaning more diseases can be tested for at one time.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>