Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SCHOTT develops new manufacturing technique for its LASF35 glass

13.06.2008
Continuous production improves transmission for glass with high refractive index

Thanks to its extremely high index of refraction, LASF35 glass offers excellent properties for sophisticated lens systems used in tight spaces. By relying on a continuous production technique, SCHOTT has also optimized the internal transmission. Particularly within the blue wavelength region, this glass offers substantially better properties than comparable optical materials.


Ball lenses are used in the writing or reading heads of DVD/DVR systems, in micro technology or in fiber optics to couple or collimate optical light. With diameters of between 0.040 and 10 mm, SCHOTT AG manufactures ball lenses from various optical glasses and achieves coupling efficiencies of 75 %. Depending on the application, optical glasses such as N-BK7, but also highly refractive glasses like LASF35 with its unique refractive index of nd = 2.02, are put to use.

SCHOTT Advanced Optics, the optics division of the international technology company, will be unveiling an improved version of its LASF35 glass (nd = 2.02204; vd = 29.06) at the international trade fair “Optatec” in Frankfurt, Germany. In doing so, SCHOTT is optimizing its line of glasses that feature high refractive indexes in extreme regions of the Abbe diagram.

“Glasses with a high refractive index represent an important prerequisite for the increasing miniaturization of optical technologies,” notes Dr. Bernhard Hladik, Product Manager of Optical Glass at SCHOTT AG. “This improvement to our product portfolio will offer new potential for innovation for industrial lenses, medical technology, optoelectronics and laser technology, as well as related advanced technologies,” he adds.

LASF35 glass is particularly well-suited for miniaturized lens systems, such as those used as ball lenses or micro prisms in medical technology for endoscopes, microscopes and other micro lenses, for example.

When it comes to manufacturing, SCHOTT uses a continuous melting process and, therefore, achieves much higher internal transmission (63 % at 400 nm for a thickness of 10 mm; color code: 45/37) that truly outshines all other comparable glasses, particularly inside the blue wavelength region.

The new glass has been approved in accordance with the European Guideline 2002/95/EG (RoHS, Restriction of the use of certain hazardous substances in electrical and electronic equipment). SCHOTT is also planning to introduce a version called N-LASF35 that will be free of arsenic in the future.

SCHOTT is an international technology group that sees its core purpose as the lasting improvement of living and working conditions. To this end, the company has been developing special materials, components and systems for nearly 125 years. The main areas of focus are the household appliances industry, pharmaceuticals, solar energy, electronics, optics and the automotive industry.

The SCHOTT Group is present in close proximity to its customers with production and sales companies in all its major markets. The Group’s approximately 16,700 employees generate worldwide sales of approximately 2.1 billion euros. The company's technological and economic expertise is closely linked with its social and ecological responsibility. The parent company of the SCHOTT Group is SCHOTT AG, whose sole shareholder is the Carl-Zeiss-Stiftung (Foundation).

Contact:
SCHOTT AG
Christine Fuhr
PR Manager
Corporate Public Relations
Phone +49 (0)6131 / 66-4550
Fax +49 (0)6131 / 66-4041
E-Mail christine.fuhr@schott.com

Christine Fuhr | SCHOTT AG
Further information:
http://www.schott.com

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>