Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SCHOTT develops new manufacturing technique for its LASF35 glass

13.06.2008
Continuous production improves transmission for glass with high refractive index

Thanks to its extremely high index of refraction, LASF35 glass offers excellent properties for sophisticated lens systems used in tight spaces. By relying on a continuous production technique, SCHOTT has also optimized the internal transmission. Particularly within the blue wavelength region, this glass offers substantially better properties than comparable optical materials.


Ball lenses are used in the writing or reading heads of DVD/DVR systems, in micro technology or in fiber optics to couple or collimate optical light. With diameters of between 0.040 and 10 mm, SCHOTT AG manufactures ball lenses from various optical glasses and achieves coupling efficiencies of 75 %. Depending on the application, optical glasses such as N-BK7, but also highly refractive glasses like LASF35 with its unique refractive index of nd = 2.02, are put to use.

SCHOTT Advanced Optics, the optics division of the international technology company, will be unveiling an improved version of its LASF35 glass (nd = 2.02204; vd = 29.06) at the international trade fair “Optatec” in Frankfurt, Germany. In doing so, SCHOTT is optimizing its line of glasses that feature high refractive indexes in extreme regions of the Abbe diagram.

“Glasses with a high refractive index represent an important prerequisite for the increasing miniaturization of optical technologies,” notes Dr. Bernhard Hladik, Product Manager of Optical Glass at SCHOTT AG. “This improvement to our product portfolio will offer new potential for innovation for industrial lenses, medical technology, optoelectronics and laser technology, as well as related advanced technologies,” he adds.

LASF35 glass is particularly well-suited for miniaturized lens systems, such as those used as ball lenses or micro prisms in medical technology for endoscopes, microscopes and other micro lenses, for example.

When it comes to manufacturing, SCHOTT uses a continuous melting process and, therefore, achieves much higher internal transmission (63 % at 400 nm for a thickness of 10 mm; color code: 45/37) that truly outshines all other comparable glasses, particularly inside the blue wavelength region.

The new glass has been approved in accordance with the European Guideline 2002/95/EG (RoHS, Restriction of the use of certain hazardous substances in electrical and electronic equipment). SCHOTT is also planning to introduce a version called N-LASF35 that will be free of arsenic in the future.

SCHOTT is an international technology group that sees its core purpose as the lasting improvement of living and working conditions. To this end, the company has been developing special materials, components and systems for nearly 125 years. The main areas of focus are the household appliances industry, pharmaceuticals, solar energy, electronics, optics and the automotive industry.

The SCHOTT Group is present in close proximity to its customers with production and sales companies in all its major markets. The Group’s approximately 16,700 employees generate worldwide sales of approximately 2.1 billion euros. The company's technological and economic expertise is closely linked with its social and ecological responsibility. The parent company of the SCHOTT Group is SCHOTT AG, whose sole shareholder is the Carl-Zeiss-Stiftung (Foundation).

Contact:
SCHOTT AG
Christine Fuhr
PR Manager
Corporate Public Relations
Phone +49 (0)6131 / 66-4550
Fax +49 (0)6131 / 66-4041
E-Mail christine.fuhr@schott.com

Christine Fuhr | SCHOTT AG
Further information:
http://www.schott.com

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>