Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SCHOTT develops new manufacturing technique for its LASF35 glass

Continuous production improves transmission for glass with high refractive index

Thanks to its extremely high index of refraction, LASF35 glass offers excellent properties for sophisticated lens systems used in tight spaces. By relying on a continuous production technique, SCHOTT has also optimized the internal transmission. Particularly within the blue wavelength region, this glass offers substantially better properties than comparable optical materials.

Ball lenses are used in the writing or reading heads of DVD/DVR systems, in micro technology or in fiber optics to couple or collimate optical light. With diameters of between 0.040 and 10 mm, SCHOTT AG manufactures ball lenses from various optical glasses and achieves coupling efficiencies of 75 %. Depending on the application, optical glasses such as N-BK7, but also highly refractive glasses like LASF35 with its unique refractive index of nd = 2.02, are put to use.

SCHOTT Advanced Optics, the optics division of the international technology company, will be unveiling an improved version of its LASF35 glass (nd = 2.02204; vd = 29.06) at the international trade fair “Optatec” in Frankfurt, Germany. In doing so, SCHOTT is optimizing its line of glasses that feature high refractive indexes in extreme regions of the Abbe diagram.

“Glasses with a high refractive index represent an important prerequisite for the increasing miniaturization of optical technologies,” notes Dr. Bernhard Hladik, Product Manager of Optical Glass at SCHOTT AG. “This improvement to our product portfolio will offer new potential for innovation for industrial lenses, medical technology, optoelectronics and laser technology, as well as related advanced technologies,” he adds.

LASF35 glass is particularly well-suited for miniaturized lens systems, such as those used as ball lenses or micro prisms in medical technology for endoscopes, microscopes and other micro lenses, for example.

When it comes to manufacturing, SCHOTT uses a continuous melting process and, therefore, achieves much higher internal transmission (63 % at 400 nm for a thickness of 10 mm; color code: 45/37) that truly outshines all other comparable glasses, particularly inside the blue wavelength region.

The new glass has been approved in accordance with the European Guideline 2002/95/EG (RoHS, Restriction of the use of certain hazardous substances in electrical and electronic equipment). SCHOTT is also planning to introduce a version called N-LASF35 that will be free of arsenic in the future.

SCHOTT is an international technology group that sees its core purpose as the lasting improvement of living and working conditions. To this end, the company has been developing special materials, components and systems for nearly 125 years. The main areas of focus are the household appliances industry, pharmaceuticals, solar energy, electronics, optics and the automotive industry.

The SCHOTT Group is present in close proximity to its customers with production and sales companies in all its major markets. The Group’s approximately 16,700 employees generate worldwide sales of approximately 2.1 billion euros. The company's technological and economic expertise is closely linked with its social and ecological responsibility. The parent company of the SCHOTT Group is SCHOTT AG, whose sole shareholder is the Carl-Zeiss-Stiftung (Foundation).

Christine Fuhr
PR Manager
Corporate Public Relations
Phone +49 (0)6131 / 66-4550
Fax +49 (0)6131 / 66-4041

Christine Fuhr | SCHOTT AG
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>