Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishy sixth sense could help robots navigate the oceans

24.06.2002


Taking their cue from fish, scientists in the US have built a navigational aid that will help robots and remote sensors find their way around the world`s vast oceans. The team describes its research today in the Institute of Physics publication Journal of Micromechanics and Microengineering.



Fish and many amphibian animals find their way through even the murkiest of waters, navigate raging torrents and spot obstacles, predators and prey using a sensory organ known as the lateral line system. Sometimes known as the fish`s sixth sense, the lateral line is a system of thousands of tiny hair cells that run the length of the fish`s body. The lateral line responds to fluid flow around the fish and allows it to detect obstacles and sense the movement of water even in complete darkness.

Now, electrical engineer Chang Liu, entomologist Fred Delcomyn and their colleagues at the University of Illinois at Urbana-Champaign, USA have developed an artificial lateral line that could give underwater vehicles and robots a sixth sense. Robots equipped with the lateral line system will be able to navigate and feel in water.


The artificial lateral line was built by micromachining a sliver of silicon so that three-dimensional hairlike structures are formed on its surface. The hair cells in a fish`s lateral line are each connected to a nerve cell and, by analogy, Liu and Delcomyn have connected each of their silicon hairs via a micro-hinge to an electronic sensor. When the artificial lateral line comes into contact with moving water, the silicon hairs are bent slightly depending on the rate of flow and the sensors detect the degree and direction of bending. A computer then interprets this movement to build up a picture of the flowing water, much as does the fish`s brain.

The artificial lateral line the researchers are developing has 100 silicon hairs per square millimetre. `This arrayed sensor will provide a unique fluid mechanics measurement tool,` says Liu, `We are collaborating with marine researchers at Massachusetts Institute of Technology to apply the sensors to autonomous underwater vehicles.` He adds that, `The lateral line sensor might also help marine biologists to understand better the functions of biological lateral line sensors.`

Dianne Stilwell | alfa

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>