Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishy sixth sense could help robots navigate the oceans

24.06.2002


Taking their cue from fish, scientists in the US have built a navigational aid that will help robots and remote sensors find their way around the world`s vast oceans. The team describes its research today in the Institute of Physics publication Journal of Micromechanics and Microengineering.



Fish and many amphibian animals find their way through even the murkiest of waters, navigate raging torrents and spot obstacles, predators and prey using a sensory organ known as the lateral line system. Sometimes known as the fish`s sixth sense, the lateral line is a system of thousands of tiny hair cells that run the length of the fish`s body. The lateral line responds to fluid flow around the fish and allows it to detect obstacles and sense the movement of water even in complete darkness.

Now, electrical engineer Chang Liu, entomologist Fred Delcomyn and their colleagues at the University of Illinois at Urbana-Champaign, USA have developed an artificial lateral line that could give underwater vehicles and robots a sixth sense. Robots equipped with the lateral line system will be able to navigate and feel in water.


The artificial lateral line was built by micromachining a sliver of silicon so that three-dimensional hairlike structures are formed on its surface. The hair cells in a fish`s lateral line are each connected to a nerve cell and, by analogy, Liu and Delcomyn have connected each of their silicon hairs via a micro-hinge to an electronic sensor. When the artificial lateral line comes into contact with moving water, the silicon hairs are bent slightly depending on the rate of flow and the sensors detect the degree and direction of bending. A computer then interprets this movement to build up a picture of the flowing water, much as does the fish`s brain.

The artificial lateral line the researchers are developing has 100 silicon hairs per square millimetre. `This arrayed sensor will provide a unique fluid mechanics measurement tool,` says Liu, `We are collaborating with marine researchers at Massachusetts Institute of Technology to apply the sensors to autonomous underwater vehicles.` He adds that, `The lateral line sensor might also help marine biologists to understand better the functions of biological lateral line sensors.`

Dianne Stilwell | alfa

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>