Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photonic technology boosts microwave signals

Researchers at Chalmers University of Technology have investigated the possibility of using fibre optic technology to generate and distribute microwave signals in future wireless networks. This technology is important to meet the increase in demand for mobility and high data rates.

Using optical fibre for the distribution of microwave signals has several benefits compared to using electrical cables. Optical fibre has low loss and frequency-independent attenuation. It is also insensitive to electromagnetic interference, low in weight, small in size and low in cost.

To meet the future demand generated by the constantly increasing number of devices that are wireless connected, and at the same time maintain full mobility and high data rates, new higher frequencies must be brought into use, as the frequency space is becoming congested.

In a new PhD thesis by Andreas Wiberg at the Photonics Laboratory at Chalmers, research is presented which deals with optical generation, modulation and distribution of signals in micro- and millimetre-wave applications. The results obtained include demonstrations of transportation of 40 GHz signals over 44 km of optical fibre modulated with 2.5 Gbit/s data, transmitted through a wireless link in a laboratory environment.

"Fibre optic solutions are particularly beneficial at high frequencies and over longer distances. Combining photonic technology and microwave applications opens up new, interesting possibilities and technical solutions," says Andreas Wiberg.

In order to also maintain sufficient coverage at high frequencies, new wireless systems with distributed antennas are required for both indoor and outdoor solutions. These antennas can be managed from a central location and with centralised control; dynamic channel allocation is possible in order to follow fluctuations in traffic load and maintain good wireless coverage.

Researchers at the Department of Microtechnology and Nanoscience at Chalmers University of Technology have investigated the possibility of using fibre optic technology to generate and distribute microwave signals for future networks with wireless Gigabit/s data rates, so-called Radio-over-Fibre.

The work by Andreas Wiberg also presents details of how several frequencies and/or frequency bands can be sent in parallel through a microwave photonic system in which optical filtering is used to separate the different frequencies. It is also shown that optical techniques could be used to generate high-frequency harmonics from electrically generated signals.

The use of photonic technology in microwave applications is referred to as Microwave Photonics and has many applications apart from communication. Microwave Photonics can also be used in analogue applications, such as reference signal generation and distribution of these signals to antenna arrays. Examples of such applications could be phase-steered radar antennas or large antenna arrays for radio astronomy.

Andreas Wiberg's thesis "Generation, Modulation, and Detection of Signals in Microwave Photonic Systems" will be defended in public on March 14, 2008.

Time: 10 am
Venue: Room A423 (Kollektorn), Kemivägen 9, Johanneberg Campus, Chalmers University of Technology, Gothenburg, Sweden

An abstract of the thesis is available in the Chalmers publication database,

For further information, please contact:
Andreas Wiberg, LicEng., MScEng., Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
Tel: +46 (0)31 - 772 1611, mobile: +46 (0)70 - 218 1296
Supervisor: Professor Peter Andrekson, Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
Tel: +46 (0)31 - 772 16 06
The images can be downloaded on Aktuella bilder>>

Sofie Hebrand | idw
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>