Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Use of a Membrane Bioreactor with Reverse Osmosis in the Pulp and Paper Industry anywhere in the World

07.03.2008
Siemens Solution Reduces Volume of Wastewater at German Board Producer by 90 Per Cent

The Siemens Industry Solutions Division (IS) has received an order from Albert Köhler GmbH & Co. KG in Gengenbach, Germany, to install a membrane bioreactor plant with downstream reverse osmosis for wastewater treatment.


Computer-animated image of the wastewater treatment plant

This means the German board producer will be the first company in the world to have such a capability at its disposal. The system will enable almost all the process water to be reused and will reduce the volume of wastewater by some 90 per cent. Not only that: the Siemens solution will reduce the need for process steam and thus cut energy costs. The new wastewater treatment plant is due to be commissioned as soon as the spring of 2008.

Albert Köhler GmbH & Co. KG, based in Gengenbach, Baden-Württemberg, employs 120 people and uses a Fourdrinier machine and two cylinder wrap machines to produce about 40,000 tonnes of high-quality board each year for folders, books and packaging, for the automotive industry, the construction sector and the woodworking industry and for advertising and display products. In order to counter the cost pressure from rising energy costs and water charges while at the same time reducing environmental impact, in June 2007 Albert Köhler GmbH commissioned Siemens to investigate the potential of a wastewater treatment system using a membrane bioreactor (MBR) with integrated partial flow treatment as part of a pilot project.

Following the successful conclusion of the pilot phase, this solution concept will now be implemented for the entire wastewater treatment system at Albert Köhler. For this, the wastewater is first cooled by means of a plate heat-exchanger system downstream of the existing primary treatment stage. The wastewater then passes into the biological clarification plant. This consists of an aerobic stage with three cascades and is operated with an activated sludge concentration of 8-10 g/l. A membrane operating system (MOS) serves as the separating facility. Activated sludge and air are injected here using the MemJet process. The resultant optimized flow to the membranes causes intensive cleaning of the membrane surface in ongoing operation, which helps achieve higher specific throughput rates and longer cleaning intervals. This means that the membranes can also be operated efficiently and economically at high CaCO3 loadings and sludge concentrations – key prerequisites for use in the paper and pulp industry, where polluting loads are high.

The MOS system consists of three parallel lines, which allows fully automatic cleaning of the membranes during operation without causing any changes to the hydraulics. A partial flow treatment stage with reverse osmosis (RO) is installed downstream of the MBR plant. Its purpose is desalination of the wastewater. As a result it is possible to return 90 per cent of all the wastewater to production with no loss of quality in the product. The ultrafiltrated wastewater is piped via an interim tank and a pumping station back to the existing fresh water reservoir. From there, the treated water is distributed through the production system together with the fresh water (supplementary water).

The mechanical engineering and all the plant technology is being produced in a containerized design, accommodated in six container modules. This will enable construction to be completed in only two months. Installation work on site will therefore be reduced to establishing the links between the modules and integrating the activation stage. As well as turnkey delivery of the new wastewater treatment plant, Siemens is also responsible for approval planning, engineering and construction of the plant.

In addition to reducing expenditure on fresh water and wastewater, the Siemens solution will also make a significant contribution to conserving energy. Because the process water can be largely reused, less steam needs to be produced in the power plant. This reduces both fuel costs and CO2 emissions from the plant.

The comprehensive wastewater treatment solution with the key core technologies of a membrane bioreactor with integrated ultrafiltration and downstream reverse osmosis plant constitutes an innovation in the paper industry which has never been implemented before in this form anywhere in the world. The system allows for an optimum combination of economic efficiency and environmental protection. For that very reason the German Federal Environment Agency has recommended its inclusion in the program run by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) to promote investment in demonstration projects designed to reduce environmental impact.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of production, transportation and building systems. Integrated hardware and software technologies combined with comprehensive industry-specific solutions enable Siemens to enhance the productivity and efficiency of its customers in industry and infrastructure. The Sector comprises six Divisions: Building Technologies, Industry Automation, Industry Solutions, Mobility, Drive Technologies and Osram. In fiscal 2007 (ended September 30), Siemens Industry generated sales of approximately EUR40 billion (pro forma, unconsolidated) with around 209,000 employees worldwide.

With the business activities of Siemens VAI Metal Technologies, (Linz, Austria), Siemens Water Technologies (Warrendale, Pa., U.S.A.), and Industry Technologies, (Erlangen, Germany), the Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities. Using its own products, systems and process technologies, Industry Solutions develops and builds plants for end customers, commissions them and provides support during their entire life cycle.

Dr. Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com/paper
http://www.siemens.com/industry
http://www.industry.siemens.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>