Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technique Shortens Welding Process for Heat-Treatable Steels

03.08.2010
The Laser Zentrum Hannover e.V. (LZH) and the Institute of Electrotechnology (ETP) at the Leibniz Universität Hannover have developed a process to inductively harden and weld multi-piece construction elements of heat-treatable steels in one step.

Heat-treatable steels are often used for highly stressed construction elements, since they show a high tensile and endurance strength resulting from the heat treatment. In order to weld heat-treatable steels, they must pass through a complex multi-step process. This enables a flawless and stress-resistant weld between both construction elements.

The LZH and the ETP have now developed a process which combines inductive hardening and laser beam welding of multi-part construction elements in one process step. The construction elements are heated to a temperature of over 900°C, the parts are laser welded and then quenched.

The so called “hot welding” immediately reduces tensions occurring during the welding process, so that the danger of cold cracks in the welding seam and a softening of the basic material are avoided.

In order to achieve this, a processing head has been conceived and constructed, which combines inductive heating, the welding process and quench hardening in one step. The processing head consists of a laser processing head, an inductor, a quench shower and a shielding gas nozzle.

In comparison to construction elements which have not been preheated, the processing head used increased the welding depth by 25%. The welding seams and the heat-affected zone show a homogenous hardness distribution. Also, martensitic structures were detected in both areas. After the welding/hardening process has been complete, it is also possible to harden the surface of the construction material using the inductor.

The hot welding process significantly shortens the processing time for heat-treatable steels, and simplifies the process run. In addition, the process simulation developed in the project can be used for an exact calculation of the process.

This research project was funded by the Stiftung Stahlanwendungsforschung, Essen, and coordinated by the Forschungsvereinigung Stahlanwendung e.V., Düsseldorf.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with pictures at www.laser-zentrum-hannover.de/en/ (English) under "publications/press releases"

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>