Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technique Shortens Welding Process for Heat-Treatable Steels

03.08.2010
The Laser Zentrum Hannover e.V. (LZH) and the Institute of Electrotechnology (ETP) at the Leibniz Universität Hannover have developed a process to inductively harden and weld multi-piece construction elements of heat-treatable steels in one step.

Heat-treatable steels are often used for highly stressed construction elements, since they show a high tensile and endurance strength resulting from the heat treatment. In order to weld heat-treatable steels, they must pass through a complex multi-step process. This enables a flawless and stress-resistant weld between both construction elements.

The LZH and the ETP have now developed a process which combines inductive hardening and laser beam welding of multi-part construction elements in one process step. The construction elements are heated to a temperature of over 900°C, the parts are laser welded and then quenched.

The so called “hot welding” immediately reduces tensions occurring during the welding process, so that the danger of cold cracks in the welding seam and a softening of the basic material are avoided.

In order to achieve this, a processing head has been conceived and constructed, which combines inductive heating, the welding process and quench hardening in one step. The processing head consists of a laser processing head, an inductor, a quench shower and a shielding gas nozzle.

In comparison to construction elements which have not been preheated, the processing head used increased the welding depth by 25%. The welding seams and the heat-affected zone show a homogenous hardness distribution. Also, martensitic structures were detected in both areas. After the welding/hardening process has been complete, it is also possible to harden the surface of the construction material using the inductor.

The hot welding process significantly shortens the processing time for heat-treatable steels, and simplifies the process run. In addition, the process simulation developed in the project can be used for an exact calculation of the process.

This research project was funded by the Stiftung Stahlanwendungsforschung, Essen, and coordinated by the Forschungsvereinigung Stahlanwendung e.V., Düsseldorf.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with pictures at www.laser-zentrum-hannover.de/en/ (English) under "publications/press releases"

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>