Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Laser Cutting Processes for CFRP- Materials

02.03.2010
The Laser Zentrum Hannover e.V. (LZH) is working on a new laser cutting process for CFRP materials, which compensates for thermal damage occurring at the cutting edges, such as exposed carbon fibers and evaporated or melted polymatrix. Following the laser cutting, the cut kerf is coated with a powdery filler material which melts and thus seals the edge, making it a high-quality cut.

Carbon fiber reinforced polymers (CFRP) are being increasingly used as a construction material in the automotive and aerospace industry, as well as for wind energy and even in the field of sports and leisure activities.

Conventional machining processes such as mechanical and water jet cutting are no longer able to meet the demands for increased atomization, a higher cutting speed and lower tool wear. By using "light" for cutting, laser processing can meet these demands, leading to an increase in productivity.

The Laser Zentrum Hannover e.V. (LZH) is working on a new laser cutting process for CFRP materials, which compensates for thermal damage occurring at the cutting edges, such as exposed carbon fibers and evaporated or melted polymatrix. Following the laser cutting, the cut kerf is coated with a powdery filler material which melts and thus seals the edge, making it a high-quality cut. To achieve the high cutting speeds of several meters per minute, ever for thicker laminates of over 3 mm, high-power lasers with maximum beam quality must be used. Thus, within the framework of this project, the LZH will be using a 6 kW- fiber laser system for this process.

A significant boost in the use of lasers for cutting CRFP is expected from this project. Also, improved profitability and production volume increase for CFRP-materials, as requested by the industry, is a goal of this project.

The project is sponsored by the German Federal Ministry of Education and Research (BMBF) within the framework of the funding program Optical Technologies. Project management is carried out by the VDI-Technologiezentrum GmbH.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>